
Finding Anomalies in Windows Event Logs Using
Standard Deviation

John Dwyer
Department of Computer Science

Northern Kentucky University
Highland Heights, KY 41099, USA

dwyerj1@nku.edu

Traian Marius Truta
Department of Computer Science

Northern Kentucky University
Highland Heights, KY 41099, USA

trutat1@nku.edu

Abstract— Security is one of the biggest concerns of any company
that has an IT infrastructure. Windows event logs are a very
useful source of data for security information, but sometimes can
be nearly impossible to use due to the complexity of log data or
the number of events generated per minute. For this reason,
event log data must be automatically processed so that an
administrator is given a list of events that actually need the
administrator’s attention. This has been standard in intrusion
detection systems for many years to find anomalies in network
traffic, but has not been common in event log processing. This
paper will adapt these intrusion detection techniques for
Windows event log data sets to find anomalies in these log data
sets.

Keywords-Windows Event Logs, Standard Deviation,
Anomaly Detection.

I. INTRODUCTION
Security is one of the biggest concerns of any company that

has an IT infrastructure. It is very important for an
administrator to always know the security posture of the
network and servers that they manage. One way to always
know the state of an environment is through logs [1]. While
there are hundreds or thousands of devices that create logs on a
network, most logs are hardly ever read due to the complexity
and volume of the log data. This creates a problem for the
administrator as logs must be reviewed, but if the whole day is
spent reviewing logs (and this will not be enough time given
the size and the complexity of these logs), there is never any
time left over to react to the problems found in the logs.

Windows event logs are one of the best tools that can be
used to find and remedy problems and vulnerabilities in
Windows operating systems [2]. While Windows event logs are
a very important source of information, they can be difficult to
review as the default “Event Viewer” in Windows only gives
options for basic filtering of events and doesn’t give any
options for correlation or other useful tools that could help an
administrator find a problem quickly and efficiently [2, 3].
Another problem with trying to review Windows event logs is
the speed at which they are created. If it takes an administrator
1 minute to review a log entry and logs are coming in at a rate
of 50 per-minute, it becomes impossible for an administrator to
review the logs. For this reason, the logs must be reviewed by a
third-party software solution to remove the events that
wouldn’t concern the administrator and only show the

administrator events that could help find problems and
vulnerabilities.

This paper will introduce a novel approach to identify
anomalies in Windows event log data using standard deviation.
With a set of event logs, it is possible to use SQL queries to
average the average number of events of a specific type at any
time of the day for any server or user in the dataset. With this,
the average number of events of a specific type can be
determined and the standard deviation of those events can be
determined. This allows alerting for times that go outside of the
standard deviation. For example, if a specific server usually
sees 150 login attempts at 8:30 AM on Monday and it receives
1000 login attempts at that time, an alert can be created to show
that there is a possible breach. With these functions, it is also
possible to alert on events that are not based on security
problems. For example, if a large number of I/O errors are
written to the event log by a failing hard drive, an administrator
would be alerted due to the anomaly created by the influx of
events. This proposed anomaly detection in Windows event
logs is implemented with the help of SQL queries and
Transact-SQL.

The remaining of the paper is structured as follows. Section
II describes the data set used in this paper. Section III discusses
the techniques used to de-identify the data set. Section IV
documents the implementation of the anomaly detection
techniques used in this research. Section V presents the
preliminary findings that were gathered with the anomaly
detection. The paper ends with future work directions and
conclusions.

II. DATA DESCRIPTION
The data used in this paper was gathered from the event

logs of approximately 30 production servers over the span of 6
months. This amounts to approximately 23GB of log data. The
servers included a Citrix farm, Domain Controllers, Exchange
servers, web servers, application servers, and database servers
[4, 5]. All servers had auditing enabled for successful and
failed logon attempts to track the number of logons at any
specific time of day [6]. The log data was collected by
converting the event logs into a syslog format and sending the
logs to a central data store. This was implemented using Snare
for Windows and a Snare server [7, 8]. The event logs were
then imported into a SQL database using the Transact-SQL

bulk import statement [9]. Once in the database, all identifiable
information was transformed using a multitude hashing
algorithms to protect the identity of the entity that provided the
dataset [11]. These algorithms are described in Section III.

The standard Windows event log format contains many
fields such as the server the log was generated from, the time
and date the log was generated, the process or program that
generated the log, a description of the event, the account that
the event occurred under, and many other fields [11]. In a
standard implementation, many of these fields may be used to
give the administrator more information such as a description
of the event to lower the amount of research that must be done
to trace down a problem. An example of the data used can be
seen in Fig.1. In this paper, only the following fields will be
used:

 Event Log – Contains the name of the event log in
which the log originated [10]. Only the Application,
Security, and System event logs are used in this paper.

 Event Source – The program or process that generated
the event. Many event sources are used in this paper
[10]. For example, all login and logoff events are from
the event source Security. In this instance both the
event log and the event source have the same name but
are separate fields, this is not the case with all events.

 Event ID – The unique ID of the event based on which
Source generated the event. Event IDs are not unique
between sources but are always unique within their
own source. An Event ID is not specific to each event
just each event of a specific type [10]. For example, all
Windows account lockout events are placed in the
Security log with a source of Security and an event ID
of 644 [6].

 Event Type – This field describes the type of event
that occurred and can be useful for determining what

type of activity generated the event [10]. In the
example events above, all events are of the type
Success Audit which shows the events were created by
successful login attempts.

 Event Category – This categorizes events into specific
groups based on the type of event [10]. For example,
the category Logon/Logoff events contains multiple
event IDs which relate to the category.

 Time/Date – The time and date of the event is used to
calculate the number of a specific event at any point in
time throughout the day on any specific day of the
week. The day of week is used due to the fact that you
may have more login requests at a specific time on a
Wednesday that you would on a Sunday. The
Time/Date field of the event is split up into multiple
columns using a Transact-SQL substring command.
The columns that are used in the paper are EvtHour,
EvtMinute, EvtDayOfWeek, EvtDayOfYear, EvtYear.
Hours and minutes were intentionally separated to
allow for easier computation of per hour and per-
minute results.

 Server ID – This is a unique identifier for each server
in the dataset. This is useful to help an administrator
link back an alert to a specific server to identify where
the problem occurred.

 User ID – This is a unique identifier for each user in
the dataset. There are over 400 unique users identified
in the dataset. This is useful to help an administrator
link back an alert to a specific user to identify which
user account may be linked to the problem or
vulnerability.

All other fields were removed because they were not
necessary for the processing of the events.

ServID UserID EvtLog EvtSrc EvtType EvtCat EvtID EvtDayOf
Week

EvtDayOf
Year EvtHour EvtMin EvtYear

17 247 Sec Sec Success Audit Logon/Logoff 538 Tue 2-Oct 12 4 2012

17 247 Sec Sec Success Audit Logon/Logoff 538 Tue 2-Oct 12 4 2012

17 247 Sec Sec Success Audit Account Logon 680 Tue 2-Oct 12 4 2012

17 377 Sec Sec Success Audit Logon/Logoff 552 Tue 2-Oct 12 4 2012

17 247 Sec Sec Success Audit Logon/Logoff 528 Tue 2-Oct 12 4 2012

Figure 1. Sample log data.

III. DATA PREPROCESSING
In this paper both known and custom hashing methods are

used to remove identifiable information from the dataset while
still keeping the integrity of the data. To be sure that the same
username or server name is always transformed to the same
value, a hashing table must be stored in the database [10]. This
means that the stored hashes must also be directly related to the
username and server name without actually storing the data in
plain text. For this reason, a substring was taken of the value
and the substring of the value was encrypted with a MD5 hash
followed by a SHA1 hash [12]. Each encrypted substring was
given a unique ID number which was used in presenting the
data to allow it to be readable versus displaying an encrypted
value. For instance, an event may show that user 415 logged
into server 10. This was implemented to protect the privacy of
the entity that provided the log data for analysis. In a real world
scenario, it is likely that an administrator would not need to

mask server names and user IDs as the data would be used
fully inside the company and not provided to outside resources.
The hashing tables were created with the SQL queries shown
below in Fig. 2.

IV. IMPLEMENTATION
The processing of data and alerting is broken down into a 5

step process as can be seen in Fig. 3. Section III showed the
process for de-identifying the data. This section will go through
the steps of processing the data, counting the events,
calculating the average number of events and generating alerts
based on the average number of events and current count of
events. These methods were implemented using Microsoft SQL
Server 2008 R2 and Windows Server 2008 R2. The system
used for testing had 8 processor cores, 16 GB of memory and
300 GB of solid state storage.

SELECT Row_Number() over(order by EncryptedServerName desc) as ServerID,
 EncryptedServerName INTO ServerHash
 FROM (
 SELECT distinct Hashbytes('SHA1',Hashbytes('MD5',
 Substring(Server,3,5))) as EncryptedServerName
 FROM RawLogs
) as ServerNames;

SELECT Row_Number() over(order by EncryptedUserName desc) as UserID,
 EncryptedUserName INTO UserHash
 FROM (
 SELECT distinct Hashbytes('SHA1',Hashbytes('MD5',
 Substring(User,3,5))) as EncryptedUserName
 FROM RawLogs
) as UserNames;

Figure 2. Source code for server and user hashing functions.

Figure 3. Data processing and alerting process.

Preprocessed
Data

Per-Minute
Log Counts

1. Anonymization
and preprocessing

2.
 C

ou
nt

 th
e

to
ta

l
nu

m
be

r o
f l

og
s t

ha
t

oc
cu

r i
n

a
m

in
ut

e.

Raw
Data

Average
Per-Minute
Log Counts

Alerts

3. Calculate the average
number of events that

occur in a minute.

Once the events are de-identified they can now be
processed to obtain usable information. The first step is to
count the number of events that happened at a specific time of a
specific day for specific servers and specific users. This can be
accomplished by a simple select statement with a count and a
group by clause as shown in Fig. 4.

This statement outputs the results into a new table for
further analysis and calculation. This will allow lowering the
granularity by grouping again and removing fields that are not
needed and outputting the data into another table. This is useful
in determining the number of events across all servers and
users for a specific time of day or a specific day.

Now that the events have been counted, the next step is to
compute the average number of events and standard deviation
for a specific day of the week. The day of week is used as it is
very important to event logs as a company that is only open 5
days a week will have much fewer events on Saturday and
Sunday than the rest of the week. These statistics are calculated
via the T-SQL sum() and stddev() methods. The complete
SQL query can be seen in Fig. 5 below.

This SQL statement (see Fig. 5) once again outputs the data
into another table so the averages and standard deviation will
be available for alerting. Unlike the counts previously, this
must be computed separately for each combination of attributes

as the averages and standard deviation cannot be simply added
together. This means that a separate table will be used for each
level of granularity. Once this data is gathered, alerts can begin
to be generated based on a comparison between the count table
and the statistics table(s). The formula used to generate alerts is
shown below:

ܶℎݏ݁ݎℎ݈݀݋ =
(ݐ݊ݑ݋ܥݐݒܧ)ܯܷܵ

(∗)ܷܱܶܰܥ + ݇ ∙ (ݐ݊ݑ݋ܥݐݒܧ)ܸܧܦܦܶܵ

Alerts are generated simply by comparing the number of
events at one point in time on a specific day of the week to the
average number of events at that time on that day of the week.
The sum, count, and standard deviation were all determined in
the last function and this function simply adds the values
together and applies a multiplier. If the number of events is
greater than the average plus k standard deviations, an alert is
generated (where k is a constant that multiplies the value of the
standard deviation). In this implementation, multiple k values
were tested to reduce the risk of false negative results. High k
values will cause higher chance of false negatives while low k
values will cause a higher number of false positive results. This
is a common trade-off in security related tasks as false
negatives are much worse than false positives. A large number
of false positives is also not a good thing to have as it causes an
administrator to waste time researching alerts that do not relate
to a problem. This alerting statement is shown in Fig. 6.

SELECT ServerID, UserID, EvtLog, EvtSrc, EvtID, EvtDayOfWeek,
 EvtDayOfYear, EvtHour, EvtMinute, EvtYear, COUNT(*) as EvtCount
INTO LogCountsPerUser
FROM LogBuffer
GROUP BY EvtYear, EvtDayOfYear, EvtDayOfWeek, EvtHour, EvtMinute,
 EvtLog, EvtSrc, EvtID, ServerID, UserID;

Figure 4. Source code for counting events.

SELECT ServerID, UserID, EvtLog, EvtSrc, EvtID, EvtDayOfWeek, EvtHour,
 EvtMinute, COUNT(*) as NumberOfDays, SUM(EvtCount) as EvtTotal,
 SUM(EvtCount)/COUNT(*) as EvtAverage, STDEV(EvtCount) as EvtStdDev
INTO EventsPerUser
FROM LogCountsPerUser
GROUP BY EvtDayOfWeek, EvtHour, EvtMinute, EvtLog, EvtSrc, EvtID,
 ServerID, UserID;

Figure 5. Source code for determining event averages.

SELECT c.ServerID, c.UserID, c.EvtLog, c.EvtSrc, c.EvtID, c.EvtHour,
 c.EvtMinute, c.EvtDayOfYear, c.EvtYear, c.EvtCount,
 e.EvtAverage + (e.EvtStdDev * 3.3) as Threshold
INTO PerUserAlerts
FROM LogCountsPerUser c join EventsPerUser e on(
 c.ServerID = e.ServerID and c.UserID = e.UserID
 and c.EvtLog = e.EvtLog and c.EvtSrc = e.EvtSrc
 and c.EvtID = e.EvtID and c.EvtHour = e.EvtHour
 and c.EvtMinute = e.EvtMinute and c.EvtDayOfWeek = e.EvtDayOfWeek)
WHERE c.evtCount > (e.EvtAverage + (e.EvtStdDev * 3.3))

Figure 6. Source code for alerting function.

This SQL statement (see Fig. 6) will output all alerts into an
alert table. In a real-world environment, this table would likely
have more values such as a description of the event to help the
administrator know more about the alert to help identify the
problem. This alert table could have triggers implemented
against the table that generate emails to notify administrators as
soon as an alert is generated. If only daily reporting is needed,
SQL jobs could scrape the table daily and send a daily report
showing the events from the previous day.

The per-user alerting functions are very useful for finding
anomalies for a specific user on a specific server but they are
unable to alert across multiple users and multiple servers. For
this reason, another set of functions must be created for this
ability. This will show attacks that are happening across many
user accounts and/or multiple servers. Attacks across multiple
user accounts are common with brute-force attacks to try to
crack passwords to obtain network access. Attacks across
multiple servers are much more prevalent than attacks against
one server as it gives an attacker more possible entry points
into the network. The per-user functions would not detect these
types of attacks as the alerting is centered around a specific
user on a specific server and thus it would not catch the
anomaly. This requires counting the number of events without
specifying ServerID and UserID along with a slight
reconfiguration of the functions for determining event averages
and alerting. The statement for counting logs can be seen in
Fig. 7 and the updated average and alerting statements can be
seen in Fig. 8 and Fig. 9 respectively.

In testing, these statements produce much better results due
to the fact that the data can show a problem across the whole
environment versus just a problem with one user on one server
fixing the problem with the high number of false positive
results that can be seen in the per-user data. These statements
(see Figs. 7 – 9) can be taken even a step farther to alert based
on intervals of minutes or hours. This is accomplished through
the use of the Transact-SQL floor function. It is used to round
the value of the EvtMinute or EvtHour field to the nearest x
minute. For example, if we wanted to do alerting based on 5
minute intervals, we would simply round everything to the
previous 5 minute mark (08:23 would round down to 08:20).
This method allows the average and alerting per-minute
functions to still work with a slightly modified event counting
function. The modified statement is shown in Fig. 10.

The per-minute queries are very useful to find attacks
across multiple servers and multiple users, but they still fall a
bit short in giving the administrator all of the information
needed to track a possible breach. The alert will show that an
event happened on the network but it is not traced back to a
specific server or group of servers. This can be accomplished
by simply adding the per-user and per-minute functions
together. If an alert is generated by any of the per-minute
functions, an administrator could look for events of the same
type at the same time on the same date in the per-user alert
data. This will help the administrator trace back the problem to
specific hosts or specific user accounts at that point in time.

SELECT EvtLog, EvtSrc, EvtID, EvtDayOfWeek, EvtDayOfYear,EvtHour,
 EvtMinute, EvtYear, Sum(EvtCount) as EvtCount
INTO LogCountsPerMinute
FROM LogCountsPerUser
GROUP BY EvtYear, EvtDayOfYear, EvtDayOfWeek, EvtHour, EvtMinute,
 EvtLog, EvtSrc, EvtID;

Figure 7. Source code for counting events per-minute.

SELECT EvtLog, EvtSrc, EvtID, EvtDayOfWeek, EvtHour, EvtMinute,
 COUNT(*) as NumberOfDays,SUM(EvtCount) as EvtTotal,
 SUM(EvtCount)/COUNT(*) as EvtAverage,
 STDEV(EvtCount) as EvtStdDev
INTO EventsPerMinute
FROM LogCountsPerMinute
GROUP BY EvtDayOfWeek, EvtHour, EvtMinute, EvtLog, EvtSrc, EvtID;

Figure 8. Source code for determining per-minute averages.

SELECT c.EvtLog, c.EvtSrc, c.EvtID, c.EvtHour, c.EvtMinute,
 c.EvtDayOfYear, c.EvtYear, c.EvtCount,
 e.EvtAverage + (e.EvtStdDev * 3.3) as Threshold
INTO PerMinuteAlerts
FROM LogCountsPerMinute c join EventsPerMinute e on(
 c.EvtLog = e.EvtLog and c.EvtSrc = e.EvtSrc
 and c.EvtID = e.EvtID and c.EvtHour = e.EvtHour
 and c.EvtMinute = e.EvtMinute and c.EvtDayOfWeek = e.EvtDayOfWeek)
WHERE c.evtCount > (e.EvtAverage + (e.EvtStdDev * 3.3));

Figure 9. Source code for per-minute alerting function.

SELECT EvtLog, EvtSrc, EvtID, EvtDayOfWeek, EvtDayOfYear, EvtYear,
 EvtHour, Floor(EvtMinute/5)*5 as EvtMinute, Sum(EvtCount) as EvtCount
INTO LogCountsFiveMinute
FROM LogCountsPerUser
GROUP BY EvtYear, EvtDayOfYear, EvtDayOfWeek, EvtHour,
 Floor(EvtMinute/5)*5, EvtLog, EvtSrc, EvtID;

Figure 10. Source code for minute interval counting function.

V. RESULTS
The purpose of the methods implemented in this paper is to

make it easier for an administrator to find problems in
Windows event logs by narrowing down the number of logs
that an administrator must view to only logs that are of some
concern to the administrator. The first part of this process is to
calculate the best k value to use for alerting based on the
number of false positive results and false negative results
generated by the alerting function. The optimal k value would
produce no false negative results while producing very few
false positive results. It was determined that the optimal k value
was 3.3 based on the number of alerts and lack of false
negative results. The number of alerts per k value can be seen
in Fig. 11. This graph shows that as the value of k grows, the
number of alerts decreases.

It is also apparent through this graph that the per-user
function creates substantially more alerts than the per-minute
function. It was determined that the per-user function was not
useful for determining what events are anomalies on its own
and only became more useful as it was applied to the per-
minute functions to narrow the results further to specific
servers at the time of the alert.

There were over 23 million log entries in the data set used
in this paper. The per-user alerting function generated
approximately 10,000 alerts while the per-minute alerting
function generated only 554 alerts. The large difference in
results is mostly caused by the differences in the way that the
two functions work. In general, the per-user function is more
likely to give more false positives as the number of events is
much smaller and it is more difficult to get good values for the
averages and standard deviation; thus, the results are not as
good. If the data set was log data for 2 or 3 years, the results
may be a bit better, but in this case, the per user function is not
a good fit for the dataset. Sample results of the per-user
function can be seen in Fig. 12.

The per-minute results are far more accurate due to the
number of events that occur across all servers and all users in a
minute. In comparison to the per-user results, the per-minute
results show over 10,000 events in some instances while the
per-user results tend to stay in the 5-20 event range throughout
a minute. The results shown in Fig. 13 show some of the
anomalies caught by the per-minute alerting. These results are
far better than that of the per-user results in the case that some
results are over 1000 events above the threshold while the per-
user results were usually around 1 event above the threshold
amount. The fifth result in Fig. 13 shows that in a period of 1

minute, over 14000 successful logins were made on the
network and this was over 1600 logins above the threshold.
This is something that an administrator would want to know to
determine why there was nearly a 10% increase in the number
of logins at that time. Through manual review it was possible to
verify that this was an anomaly in the data set and was caused
by a new system being added to the environment.

The functions based on intervals of minutes also showed
many of the same alerts that the per-minute function produced.
These functions could be useful to an administrator for attacks
that carry on for longer periods of time and wouldn’t generate
an alert with only per-minute alerting enabled. The number of
alerts created by these functions compared to the alerts created
by the per-minute function can be seen in Fig. 14.

Due to the size of the data set, it is important that the
functions complete quickly to produce results. In an
implementation where the events are streaming through the
functions as they are collected from servers, it must take less
than one minute to process one minute of logs so that the
functions do not bottleneck the processing of data. In testing it
took approximately 15 minutes to compute alerts for 6 months
or 23 GB of data. Based on this information, the functions are
able to process approximately 1.5 GB of data per minute on the
test system used. Based on these results, one is able to conclude
that the functions perform well and are able to handle large
environments that produce large amounts of log data.

Figure 11. Number of alerts per k value.

0

50000

100000

150000

200000

250000

2 2.2 2.4 2.6 2.8 3 3.2 3.4

N
um

be
r o

f A
le

rt
s

Number of Alerts per k value

Per-Minute Alerts Per-User Alerts

k

ServID UserID EvtLog EvtSrc EvtID EvtHour EvtMin EvtDayOf
Year EvtYear EvtCount Threshold

1 247 Sec Sec 680 6 29 7-Jun 2012 5 4.9830532

1 247 Sec Sec 680 10 32 12-Jul 2012 4 3.9830532

1 297 Sec Sec 538 6 40 10-Sep 2012 2 1.9949874

1 377 Sec Sec 552 1 14 7-Sep 2012 4 3.8894636

1 377 Sec Sec 552 5 51 5-Jul 2012 3 2.9830532

Figure 12. Sample per-user alert data.

EvtLog EvtSrc EvtID EvtHour EvtMin EvtDayOf
Year EvtYear EvtCount Threshold

Sec Sec 538 1 2 10-Sep 2012 11573 10933.816

Sec Sec 538 2 24 13-Jul 2012 4766 4672.9863

Sec Sec 538 8 0 7-Sep 2012 2 5031.649

Sec Sec 538 8 42 10-Sep 2012 5124 3918.3936

Sec Sec 538 8 43 10-Sep 2012 14372 12702.781

Figure 13. Sample per-minute alert data.

Due to the size of this data set and price of software that
can perform similar tasks, it was not possible to test these
results against any other software to test the validity of the
results. Most event log analysis software packages are not free
to use, thus they could not be used in testing for this paper.
Data mining software that has built-in anomaly detection was
also not able to be used due to the size of the data set.

Figure 14. Number of alerts for per-minute intervals.

VI. CONCLUSIONS AND FUTURE WORK
This paper introduced a novel approach to find anomalies in

Windows event log data through the use of standard deviation.
This was accomplished through the use of SQL queries and
Transact-SQL. Two possible methods for generating alerts
were tested and it was determined that it is best to generate
alerts across all servers and all users versus generating alerts
for specific users on specific servers. The results show some
use to an administrator in the fact that it lowers the amount of
logs that must be reviewed to an amount that is feasible to
review. Through manual review, it was determined that many
of the results generated by the per-minute functions were actual
anomalies in the data set and needed further review from an
administrator.

There are two paths to explore in the future with this
research. First, other measures could be used rather than
standard deviation and other tasks could be performed to help
with the speed of processing the data in larger systems. Second,
other software could be purchased to verify the results rather
than reviewing the results manually to check the validity of
alerts. In the future, it would also be useful to implement
methods to allow the data to automatically generate alerts
versus having to manually run each step of the process as was
done in this paper.

1 5 10 15 20
Events 554 672 483 392 356

0

200

400

600

800

To
ta

l E
ve

nt
s

Minute Interval Events

REFERENCES
[1] R.M. Magalhaes, "Understanding Windows Logging,"

WindowsSecurity.com, Jan. 2013. [Online]. Available:
http://www.windowsecurity.com/articles-
tutorials/windows_os_security/Understanding_Windows_Logging.html.

[2] K. Dashora, D.S. Tomar, J.L. Rana,, “A Practical Approach for
Evidence Gathering in Windows Environment”. International Journal of
Computer Applications, Vol. 5, Number 10, pp. 21–27, August 2010.

[3] "Event Viewer," Wikipedia, Mar. 2013. [Online]. Available:
http://en.wikipedia.org/wiki/Event_Viewer.

[4] Citrix XenApp Official Site, Available: http://www.citrix.com/
downloads/xenapp.html.

[5] "Citrix XenApp," Wikipedia, Mar. 2013. [Online]. Available:
http://en.wikipedia.org/wiki/Citrix_XenApp.

[6] "Auditing Logon Events," Microsoft Technet, Jan. 2005. [Online].
Available: http://technet.microsoft.com/en-
us/library/cc787567%28v=ws.10%29.aspx.

[7] Snare Official Site, Available: http://www.intersectalliance.com/
projects/SnareWindows/.

[8] "Snare (software)," Wikipedia, Dec. 2012. [Online]. Available:
http://en.wikipedia.org/wiki/Snare_%28software%29.

[9] "Transact-SQL," Wikipedia, Feb. 2013. [Online]. Available:
http://en.wikipedia.org/wiki/Transact_SQL.

[10] R.F. Smith, "Event-Log Fields," Windows It Pro, Apr. 2004. [Online].
Available: http://windowsitpro.com/systems-management/event-log-
fields.

[11] "Hash Function," Wikipedia, Mar. 2013. [Online]. Available:
http://en.wikipedia.org/wiki/Hashing_algorithm.

[12] B. Mulvey, “Evaluation of SHA-1 for Hash Tables”, 2007, Hash
Functions, Available: http://home.comcast.net/~bretm/hash/9.html.

