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Degrees of Belief:
Are They Like Probabilities?

Maybe....

Bel( [It will rain today] ) = 0.7
Bel( [It will not rain today] ) = 0.3

Bel( [Jo is sad or sleepy] ) = Bel( [Jo is sad] )
                                           + Bel( [ Jo is sleepy] )
                                           − Bel( [ Jo is sad and sleepy] )



Maybe Not: “Frank
Agnosticism”

“The rules for belief functions permit us, when we have little 
evidence bearing on a proposition, to express frank agnosticism
by according both that proposition and its negation very low
degrees of belief. [...]

“The Bayesian theory, on the other hand, cannot deal so readily
with the representation of ignorance, and it has often been 
criticized on this account. The basic difficulty is that the theory
cannot distinguish between lack of belief and disbelief.”

- Shafer 1976 A Mathematical Theory of Evidence, pp.22-23.
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Bel( [It will rain today] )       = 0.2
Bel( [It will not rain today] ) = 0.1

...?



A belief function on a finite set W is a function Bel: 2W → [0,1]  satisfying:

1.  Bel(∅) = 0

2.  Bel(W) = 1

3.  Bel(U∪V)    ≥    Bel(U) + Bel(V) 
                          −    Bel(U∩V)
     
     Bel(U∪V∪W)     ≥   Bel(U) + Bel(V) + Bel(W)
                                  −   Bel(U∩V) − Bel(U∩W) − Bel(V∩W)
                                  +   Bel(U∩V∩W)
 
     etc. 

Belief Functions: The Axioms

would be “=” 
for probability
measures

cf. probability measures, which  need only be defined
on a subalgebra of 2W



“Frank Agnosticism” from the Axioms

Take an event and its complement: A, ¬A.
The three axioms imply:
1 =  Bel(W)  =  Bel(A∪¬A)   ≥   Bel(A)+Bel(¬A)−Bel(∅)  =  Bel(A) + Bel(¬A)

So with belief functions, you only need have: Bel(A) + Bel(¬A) ≤  1.
But with probabilities, you must have:            Pr(A)   + Pr(¬A)   =  1.

I can believe in A a little bit, 
without having to believe in ¬A a lot.



Mass Functions
Belief functions assign numbers to events based on the
accumulated “mass of evidence” of their subsets. 
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One might have thought it would be fine just to assign masses to
individual worlds (outcomes) and accumulate them like this:
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But Shafer’s claim is that evidence is provided at the level
of specific subsets of W, not at elements of W. 
E.g. a sensor reading can provide nonzero evidence for {x,y} while 
providing zero evidence for {x}, {y}, and ∅.



Evidence Mass

m(U) seems to be “the amount of belief committed to U that
has not already been committed to its subsets [Halpern 2003, p36].”

E.g. W= {hep, cir, gal, pan} (mutually exclusive syndromes). 
Consider with a diagnostic test that “was positive 70% of the
time when a patient had hep or cir.” 
Think of how an m function could represent this test:

m({hep,cir})= 0.7. 
Ok. How should this constrain m({hep})? Or m({hep,cir,gal})?
Can they both still be 0?
Shafer: Yes.



“Calculus”
The form of a sum over all subsets of a finite set
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is a kind of integral.

Then: what is the related notion of derivative?

To picture this, think of the boolean lattice of subsets of W.   



Functions on Subsets

?



The Lattice of Subsets

{w,x,y,z} = W∅

{w} {w,x,y}
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{w,x,z}
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{w,z }

{x,z }

{y,z}



A Function on the Lattice of Subsets

{w,x,y,z} = W∅

{w} {w,x,y}
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{w,x,z}
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{x,z }
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0
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0
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0
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0
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0.05
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0

0.20

E.g. m({y,z}) = 0.05,     m({x,y,z}) = 0   ...

m: 2W→ R
Arbitrary! Here neither a probability measure nor a belief function!



An Integral on the Lattice of Subsets

{w,x,y,z} = W
∅
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= m(∅) + m({w}) + m({y}) + m({z}) + m({w,y}) + m({w,z}) + m({y,z}) + m({w,y,z})
 =   0 + 0.05 + 0 + 0 +0 + 0.05 + 0.05 + 0.25
 =   0.40.
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An Integral on Any
Locally Finite Partial Order

A

B

C
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“Locally finite”:  { X | A ≤X≤B } is finite, for any A,B.

(Defined only if A and B are comparable)



Analogies
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f= dF/du “ m = dB/dU ”  ??



Example

{w,x,y,z} = W∅

{w} {w,x,y}

{x}

{y}

{z}

{w,x}
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Getting m from B
E.g.  U= {x,y,z}

B(U) = m(∅) + m({w}) + m({y}) + m({z}) 
         + m({w,y}) + m({w,z}) + m({y,z}) + m({w,y,z})

Rearranging:
m(U) = B(U) 
         − [ m(∅) + m({w}) +  m({y})  + m({z}) + m({w,y}) + m({w,z}) + m({y,z}) ]

This is a perfectly fine recursive definition:
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strict subset!



Getting m from B (closed form)
Back-substitute repeatedly to eliminate this recursion:
m(U) = B(U) 
         − [ m(∅) + m({w}) +  m({y})  + m({z}) + m({w,y}) + m({w,z}) + m({y,z}) ]

m({y,z})  =  B({y,z})  −  [m(∅) + m({y})  + m({z}) ]
m({w,z}) =  B({w,z}) −  [m(∅) + m({w})  + m({z}) ]
m({w,y}) =  B({w,y}) − [m(∅) + m({w})  + m({y}) ]

m({w})  = B({w}) – [m(∅)]
m({y})   = B({y})  – [m(∅)]
m({z})   = B({z})  –  [m(∅)]

Finally:   m(U) =    B(U)
                           – [B({y,z}) + B({w,z}) + B({w,y})]
                           + [ B({w}) + B({y}) + B({z})  ]
                           –  [B(∅)]



“Derivative”
m(U) =   total B value of all subsets of size |U|
          –  total B value of all subsets of size |U| – 1
          +  total B value of all subsets of size |U| – 2
          –  total B value of all subsets of size |U| – 3
          +  … etc., down to B(∅).
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Write this m= dB.



Transforms
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B and m are “Möbius transforms” of each
other.

m= dB.
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“Möbius?”
D.M. Brown, Elementary Number Theory (1994),  pp.112-117:

Theorem (Möbius Inversion Formula). Let F and f be two number-theoretic
functions related by the formula

F(n)  =                             Then   f(n) =

where µ(n) is the Möbius function.
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The Möbius function gives information about prime factorizations.

          µ(n) := (–1) r  if n is a product of r distinct primes.
                  := 0         otherwise .

µ(6)= µ(2×3)= 1      µ(30)=µ(2×3×5)= –1        µ(12)=µ(22×3)= 0.



Möbius and Möbius
What’s the connection between this number theory application
and belief/evidence functions?  The partial order.

2

3

4

5

6

7

8

9

10

11

121

The positive integers can be partially ordered by the divides relation.
LCM and GCD play the role of ∪ and ∩ in a boolean lattice.



Möbius on Integers
2

3

4

5

6

7

8

9

10

11

12
1

0.2

0

0.1

0.2

0.3
0.1

0.6

0

0

0.5

0

0.7

Taking F= ∫ f , i.e. F(n) = Σd|n f(n), we have
F(0)=0, F(2)= 0.2, F(3)=0.1, F(4)= 0.4, F(6)=0.6., and F(12)=0.9.

Now inverting this with f= dF, i.e. Σd|n µ (n/d) f(n), we can recover f(12):
f(12) = µ(12/12)F(12) + µ(12/6)F(6) +µ(12/4)F(4) + µ(12/3)F(3) + µ(12/2)F(2) + µ(12/1)F(1)
         = µ(1)F(12)        + µ(2)F(6)      +µ(3)F(4)      + µ(4)F(3)      + µ(6)F(2)      + µ(12)F(1)
         = (1) (0.9)           + (–1)(0.6)     + (–1)(0.4)     + (0)(0.1)       + (1)(0.2)       + (0)(0)
         = 0.1



The Same? Or Different?

{2}

{3}

{2,2}

{5}

{2,3}

{7}

{2,2,2}

{3,3}

{2,5}

{11}

{2,2,3}
∅
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Consider numbers merely
as bags of their prime factors!
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The same!

now “ −” is bag-theoretic difference (generalizing the set-theoretic case)



Möbius Functions, Möbius Transforms

where K(U,X) is known as a Möbius function.

Written for integers U,X instead of bags, the number theory
case has K(U,X)= µ(U/X).
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Think of it like a “kernel” for a Möbius  transform!



Analogies Again
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Getting derivatives by integrating....
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Reminiscent of something else....



In General
Let (℘,≤) be a locally finite partial order. Consider the set of functions ℘×℘→
R.  This is an algebra with scalar multiplication, pointwise addition, and a
multiplication of functions h= f*g defined this way:

                                  h(x,y) =

Let ζ be the characteristic function of ≤ : ζ(x,y) =1 if x≤y;  =0 otherwise.

The Möbius function µ of a partially ordered set (℘,≤) is defined as the inverse
of its characteristic function: δ = ζ*µ  = µ*ζ where δ is the Dirac delta (the
characteristic function of =).

! 

f (x,z)g(z,y)
x"z"y

#

Rota, 1964.
See also: Aigner (1979) Combinatorial Theory.



Little Footnote

For more on probabilities, belief functions, etc:

J. Y. Halpern.
Reasoning Under Uncertainty.
MIT Press, 2003.



Big Footnote

Stephen E. Newman.
“Measure Algebras and Functions of Bounded Variation
on Idempotent Semigroups.”
Transaction sof the AMS Vol. 163 (January 1972), 189-205.

Möbius functions in action!


