

### Helmholtz Machines Memory • Fluctuation • Dreams

Academy of Media Arts, Cologne June 28, 2006

Kevin G. Kirby Evan and Lindsay Stein Professor of Biocomputing Department of Computer Science, Northern Kentucky University



## Outline

- Machines Going minimalist in computer science
- Memory From associations to neural connections
- Fluctuation Surprise, energy, temperature, entropy
- Dreams Minimizing surprise by dreaming a world

# Helmholtz I



"Moreover, the visual image for Helmholtz is a sign, no passive copy of external things such as a photographic image, but rather a symbolic representation constructed by the mind to facilitate our physical interaction with things.

[...] Helmholtz sought to establish a psychological principle capable of guiding eye movements consistent with an empiricist approach to vision as learned behavior constantly in need of some self-corrective learning procedures to adapt it to the exigencies of visual practice."

**"The Eye as Mathematician** Chnical Practice, Instrumentation, and Helminolta's Construction of an Empiricist Theory of Vision." T. Lenoir, in *Hermann von Helmholtz and the Foundations of Nineteenth-Century Science*, D. Cahan (Ed.) University of California Press, 1994.















































| Mer                | nory, Learning                                                                                |
|--------------------|-----------------------------------------------------------------------------------------------|
| The "Qu<br>repeat: | lintilian rule" for memory<br>Memory += <b>  response                                    </b> |
| The del            | a rule for learning                                                                           |
| repeat:            | Memory += ε   error in response > 〈 trigger                                                   |













| Entropy                                                                                                                                                                                                                                                      |            |                    |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------|--|--|--|
| entropy = expected surprise                                                                                                                                                                                                                                  |            |                    |  |  |  |
| <pre>= probability of outcome 1 × surprise of outcome 1 + probability of outcome 2 × surprise of outcome 2 + probability of outcome 3 × surprise of outcome 3 + probability of outcome 4 × surprise of outcome 4 + PPPPPPPPPSSPPPPPPPPPPPPPPPPPPPPPPPP</pre> |            |                    |  |  |  |
|                                                                                                                                                                                                                                                              | Outcome    | Count [total = 50] |  |  |  |
|                                                                                                                                                                                                                                                              | Phlegmatic | 41                 |  |  |  |
|                                                                                                                                                                                                                                                              | Sanguine   | 6                  |  |  |  |
|                                                                                                                                                                                                                                                              | Choleric   | 3                  |  |  |  |
| $H = -41/50 \log (41/50) - 6/50 \log (6/50) - (3/50) \log (3/50)$<br>= 0.586                                                                                                                                                                                 |            |                    |  |  |  |

| Entropy                                                                                                                                                                                                                                                            |            |                    |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------|--|--|--|
| entropy = expected surprise                                                                                                                                                                                                                                        |            |                    |  |  |  |
| <pre>= probability of outcome 1 × surprise of outcome 1 + probability of outcome 2 × surprise of outcome 2 + probability of outcome 3 × surprise of outcome 3 + probability of outcome 4 × surprise of outcome 4 + PPSPPPPPSSCCSPPPCPPSSCCCSSPPPPSSSCCCSSCSS</pre> |            |                    |  |  |  |
|                                                                                                                                                                                                                                                                    | Outcome    | Count [total = 50] |  |  |  |
|                                                                                                                                                                                                                                                                    | Phlegmatic | 17                 |  |  |  |
|                                                                                                                                                                                                                                                                    | Sanguine   | 17                 |  |  |  |
|                                                                                                                                                                                                                                                                    | Choleric   | 16                 |  |  |  |
| H = - 17/50 log (17/50) - 17/50 log (17/50) - (16/50) log (16/50)<br>= 1.10 a situation fraught with greater surprise                                                                                                                                              |            |                    |  |  |  |









































## Tomorrow



Closer looks at artificial neural memory

What exactly is free energy in a Helmholtz machine?

How do you code Helmholtz machines?



Helmholtzmaschinen im Klanglabor? Does the sleep of reason bring forth monsters?



Belief dynamics? Exaptability and torsion? Quantum representations? Evolutionary algorithms? Rice's Theorem?

### **Related Readings**

Dayan, P., G.E. Hinton, R.M. Neal, and R.S. Zemel. 1995. The Helmholtz machine. Neural Computation 7:5,889-904.

Dayan, P. and G.E. Hinton. 1996. Varieties of Helmholtz Machine. Neural Networks 9:8, 1385-1403.

Dayan, P. 2003. Helmholtz machines and sleep-wake learning. In M.A. Arbib, Ed., *Handbook of Brain Theory and Neural Networks, Second Edition.* MIT Press.

Hinton, G.E., P. Dayan, B.J. Frey and R.M. Neal. 1995. The wake-sleep algorithm for unsupervised neural networks. *Science* 268: 1158-1161.

Ikeda, S., S.-I. Amari and H. Nakahara. 1999. Convergence of the wake-sleep algorithm. In M.S. Kearns et al, Eds., Advances in Neural Information Processing Systems 11.

Kirby, K.G. 1997. Of memories, neurons, and rank-one corrections. College Mathematics Journal 28:1, 2-19.

Neal, R. and G. Hinton. 1998. A view of the EM algorithm that justifies incremental, sparse and other variants. In M.I. Jordan, Ed., *Learning in Graphical Models*, MIT Press.

Xu, Lei. 2003 Ying yang learning. In M.A. Arbib, Ed., Handbook of Brain Theory and Neural Networks, Second Edition. MIT Press.

And a new student thesis (March 26,2006!) → Pape, Leo. "Neural Machines for Music Recognition", Utrecht Univ.

## **Other Readings**

#### THREE RELEVANT NEURAL NETWORK BOOKS

Dayan, P. and L.F. Abbott. 2001. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press.

Haykin, Simon. 1998. Neural Networks: A Comprehensive Foundation. Second Edition. Prentice-Hall.

Rumelhart, D.E., J.L. McClelland. 1986. Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press.

#### SOME OF MY PAPERS

- K. Kirby, "Jeffrey-Bayes Dynamics as Natural Gradient Descent by a Recurrent Network" Submitted, Neural Computation, June 2005.
  K. Kirby, "Biological Adaptabilities and Quantum Entropies." BioSystems 64, pp.31-41 (2002).
  K. Kirby, "Exaptation and Torsion: Toward a Theory of Natural Computation". BioSystems 46, pp. 81-88. (1997.)
  K. Kirby, "Hermeneutics and Biomolecular Computation." Optical Memory and Neural Networks, Vol. 4 No. 2, pp.111-117 (1995).
  K. Kirby, "Duality in Sequential Associative Memory: A Simulationist Approach", Proceedings, IEEE Int'l Conf. on Systems Engineering, pp. 351-354. (1991).
  K. Kirby and N. Day, "The Neurodynamics of Context Reverberation Learning." Proceedings, IEEE Conference on Engineering in Medicine and Biology, pp.1781-1782 (1990).
  K. Kirby, "Information Processing In the Lorenz-Turing Neuron." Proceedings of the 11th International IEEE Conference on Electronics in Medicine and Biology (Seattle, November 9-12, 1989), Volume 11, 1358-1359.
  K. Kirby and N. Conrad. "Intraneuronal Dynamics as a Substrate For Evolutionary Learning" Physica D, Vol. 22, 150-175 (1986).
  K. Kirby and M. Conrad. "The Enzymatic Neuron as a Reaction-Diffusion Network of Cyclic Nucleotides." Bulletin of Mathematical Biology, Vol. 46, 765-782 (1984).

