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ABSTRACT ‘
A new neural architectre was developed for efficient Jeaming of
spatiotemporal dynamics. This architecture reduces the leaming

problem to two subproblems: (1) the formation of a "context” con-
taining-compressed input histories, and (2) the classification of con-
text by an associational Elgonthm. The first subprobiém was han--
dled by introducing a nonlinear dynamical system into the neural
nerwork, which can be a low-connectivity random Ret or a continu-
ous reaction-diffusion syswm. This enables the solution of the
second subproblem to become simpler, requiring only a variant of
the classical perceptron leaming algorthm. A theoretical framework
was developed in which the leaming capabilities were anslyzed in
terms of finite automata theory. A computer simulation ‘system was
developed and used to show efficient jeaming of the sequential par-
ity problem. Further simulaions clarified the role of the context
subsystem and demonstrated promising not-connectionist’ architec-
tures for this problem. ’

INTRODUCTION

The canonical problem in neural network research is the fol-
lowing: Given afinite subset of the graph of a function f, guess what
fis, The subset of the graph we are given is called a training set.

Elements of the domain are spatial panerns. The algorithm must-

process this set 1o Come up with a representation forf. The represen-

tation can be used © compute f on elements of the domain not .

appearing in the training set, and- this is called "generalization”.
Often we are imerested in adding a temporal dimension. This could
mean real time, or merely the information included in sequences of
input pattemns provided to the system. In other words, an output pat=
tern is no longer detenmined only by an input pattern, but potentially
by an unbounded scquence of previous input pattemns. If we let X and
¥ be our input and outpot seis, respectively, we pass from the- inter-
polation of a function f: X — Yo the simulation of a dynamical
system &: @ xX — O where ( is the set of states. of our observed
system. The job of the Jearning system is 10 construct an internal
model of this observed system. Training seis are NOW SeqUERces of
inputs paired with sequences of output. A good simulation of & per-
mits good generalization. Connectionist systems can be hamessed
for such computation by nsing recurrent networks. Indeed, backpro-
pagation formally generalizes fairly easily to the recument case,
although such an extension secms 10 be fairly demanding of compu-
taticnal resources (Williams and Zipser 1089). This is a'very active
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area of connectionist research (Giles, et al. 1990, Pineda 1989). Of
conrse, this is by no means the only sense of "temporal” leaming.
One can also phrase the problem as one of Jeaming a scquence of
actions in a network with scatar feedback; this is the work of Klopf
(19%88). ' )

Our architecture is sketched schematically in Figure 1. We
assume a discrete time scale. Spatal input pattems arrive on input
lines, and are sent to an output layer of conventional linear threshold
newrons, and to an internal subsystem. This intemal subsystem has
explicit or implicit recurrent commections, and is used to store the
state of the system. Unlike the stae wmnits in the work of Jordan
{1986), the state represenation is arbitrary, We call this a context
reverberation (CR) subsystem. In the work of Gallant and King
(1988). enhancing an carlier model of Rosenblart (1961). a totally
connected net of linear threshold neurons was used for a similar
function, The output of a sequential system depends on current input
plus state. Our architecturs captures this dependence in a very
straightforward way; output units feceive signals from the input units
and the CR subsystem. '

The important research problem here is this: how can the CR-
subsystem. send an effective representation of input history to the
output layer? Let us define conrext as the dynamical state of the CR
subsystem. This concept can be clarified by considering a spectrum
of approaches to connectionist architectures for sequential problems,
shown in Figure 2. At one extreme, time-delay neural networks send
exact delayed copics of the input signais to the output layer. A con-
ventional leaming algorithm leams to progduce comeCt ouiput from
inputs x{¢), x(¢—~1), **- x(t—TMAX), where the input temporal win-
dow {+-TMAX...r] is determined in advance. Hence context in this
case exactly corresponds o history. On the other exmeme, some

sequential probléms depend on time and not on history. A clock -

neural network calculates outputs from the input signal x(r} coupled
with an encoding of &,

In many problems, we need an unbounded temporal window,

plus some access to epcoded time, but do not want to maintain the

overhead of a very large number of time-delayed inputs. The usual
approach would be to designate SOME NEWTCNS a5 state units, and give
them recurrent connections. These connections can be learned by
“recumrent back-prop”, for example. But our architecture differs at a
deep level from that approach. In such recurment adaptation algo-
rithms, the idea is to create a homomorphism from the dynamics of
the observed system to the dynamics of the nenral net, If & is the
dynamics of the system that we want 1o modei (a finite automaton
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that computes parity, for example}, we wonld torset up the weights of
‘our neural net so that its dynamics is given by &', where there is a
mapping # from extemal states 0 to net states (° that preserves the
dynamics, This means that these two dynamics are coordinated by
the relation & (h(g),x) = h (8(g,=)) for all inputs x and states of the
Ghserved system. This bomomorphism of finite awomaia
cormesponds o the simulation relation: the leaming system is sup-
posed to simulate the ohserved system.

Qur model constructs a represenmation of the observed system

inadiﬂ’emm.innuvaﬁvesmse.Wchaveamappingnbthatcnuapm :

many States of our CR-subsystem onto each smte g of the observed
sysiem. This is depicted in Figore 3. The equivalence classes of
states, ¢~ (g), correspond to the ellipses in the botom half of the fig-
ure. The set of these classes is called the “quotient space” under the
mapping ¢. It is this quotjent space that, 25 leaming proceeds, should
come to represent the known system. As time proceeds, each class
flows through the CR state space (bottom) tracking the transitions in

e observed state space (above). In reality, since the complexity of -

the CR dynamics is so great, occasionally we will find that generali-

_ zafion off a training set of scquences Is poar over long time periods.

Referring to the figure, this happens when the dynamics of the CR
system does not track the quotient structure. The trajectories wander
ouit of their proper equivalence classes, 50 the leamed intemnal model
wonld break down a few time steps past the end of the training data.
A good CR architecture will make this a rare GCCUITENCE.

LOW-CONNECﬂVHY ARCHI'I'ECH]RES FOR CONTEXT
REVERBERATION ‘ .
Having discussed the mole of the CR subsysiem, we now wum
jts implementation. We first investigated a connectiomist architec-
ture, in which the CR. subsystem contained a Tumber of lincar thres-

- hold units arranged in a grid, each connected to others within a lim-
ited neighborhood. (This contrasts with the total G.e.. O(nh)) con-

nectivity in the nets of Hopfield, Anderson, and others.) Synaptic
weights are fixed and randomized. We had known from the work of
Gailant and King (1988) that a totally conmected layer of random
hidden units could leam sequential problems with some SUCCESS. But
dozens afmitsinasuchahighlycpnnect:dsysmwilmsrmin
hundreds.of wires. Our-first siep showed that for the so-called “robot
plan task”, Jow connectivity was morc efficient (Kirby and Day
1050). An "autopsy" of the networks (from large sequences of ran-
domly generated trials) showed that the most successful ones were
those that had highly irregular dynamical trajectories. We can see

this if we plot the intensity of the firing states of the CR net versus '

time, for an arbitrary clamped input. (Intensity here means we add
up the +1/-1 (firing/silent) values.) This is shown in the two piots at
the bortom of Figure 4. The first plot shows a “good” CR net, which
learned -the task quickly, and the bottom a *bad" net that failed to
leam. This shows that aperiodicity (or, strictly speaking, periods of
length much longer than the time scales of interest) is an attribute
correlated with good CR performance. One way to control this is 10
adjust the "gain" signal, which amplifies the input signals coming in
to the hidden net. This is shown in the plot at the top of Figure 4.
Low gain vields better results. '

The robot plan task, however, merely invoives mémorizing a
set of sequence pairs, and does not address the issue of generaliza-
tion. To go beyond thiss we had our network leam the sequential
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parity automaton (Figure 5. The output at time ¢ is the parity of the
stting of binary inputs from time 0 to tme z. We used connectionist
CR neis with various neighborhood sizes, and plotted the leaming
times in Figure 6. The percepiron algorithm was used o make the
input/context associations. The solid lines plot the number of percep-
tron epochs (passes through the waining sef), when trying 10 leamn
parity from 20 sequences of duration equal t 6 time units. We used
128 CR units, and averaged over 10 different randomly seeded conii-
gurations. We only plot the result for cases when every instance
learning the training data perfectly (zero error). The dashed lines
show the performance of an unseen st set of bit sequences. This
shows that not only is Iower connectivity dramatically more cfficient
in terms of required mnnecﬁons.hztitisevmmomcfﬁcimtin
absoluts learning fime. Preliminary resuits from a genetic modifica-
tion scheme, which remove vnchanging context units and swap
weight values, showed modest improvements in leaming rates with
no significant change in generalization ability.

NON-CONNECTIONIST EXTENSIONS '
We can concluile from the experiments just described that the

Ipcality of the connections in the CR architecture is a feature t0 be.

exploited. This is an economic issue; fewer connections reguire less
space and ease hardware implementations. But it also allows us t©
more rigorously investigate the dynamical properties of CR systems.
{n this scotion we discuss our work in relation to work in the dynam-
ical systems disciplines. Insights from these disciplines are impor-
tant, because they belp us understand and extend the capabilities of

Our connectionist CR-subsystem uses a random network.
Kauffman {1989) showed that networks of totally connected random

‘boolean imits exhibit an exponential growth in Jimit cycle length as

the number of units increases. (A limit cycle is one period of the

state trajectory.) In other words, a the state majectories of even a

small net are highly aperiodic. This is enmed a "chaotic™ phase, 25
opposed to the so-called "ordered phase™ when cycle lengths increase
polynomially with the number of units, Reducing from global 1o
local connectivity slows this growth. With only 2-neighbor connec-
tivity the periodicity grows as ¥, too slowly for effective use as 2
context reverberation net. Kiirten (1988) studies threshold units with
différent local comnectivities and shows that wiereas low-
connectiviy systems in which neighbors are chosen randomiy have
exponential growth in cycle lengths, nearest-neighbor systems may
show linear growti. The Jow-connectivity nets studied were the 3-
neighbor "honeycomb” lattice, and the self+4-neighbor square lat-

" tice. The zero-threshold honeycomb lattice shows linear growth in

cycle lengrh, and the zero-threshold square lattice with self-feedback
shows cxponential growth, Adding a unit threshold moves this sys-
tem back inw an ordered phase. Our research suggesis that we
should seek a chaotic phase in our contexi-reverberation systems. So
if we are committed to using a local net of conventional neurons, the
connectivity level (i.e., neighborhood size ) should be at least 4. For
connectivity less than this, leaming should be impossible. 'We have
experimentally confirmed this; the curve in Figure 6 goes to infinity
on the Ieft, when connectivity approaches 3.
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Figure 6. Lean_:il-:g times (epochs, solid) and genersalization accaracy (test et fraction incorrect X1000, dashed)
versus connectivity for the sequential parity problem, for neighborhood sizes of 3, 4, 6, 8, 16 and 64.

Given the efficiency of low-connectivity threshoid lattice auto-
mata as chaplic reverberation subsystems, we can investigate the
potential of continuous local dynamical systems for setting up con-
text, The generai cage is a reaction-diffusion equation, of the form

a“gi‘—” = V-D@Vaur) + Riu@nl ®

Here u(it.t) is an excitation signal diffusing across a space with

coordinates | D is the diffusion coefficient, which may vary across

the space. X is the reaction term, a function of the excitation level.
In the two terms we have the two ingredients necessary for effective
context reverberation: Jocal communication (vig the diffusion term),
and local computation (via the reaction term). In one dimensior, in
analogy to the discrete set of threshold units we used for learning the
parity problem in the previous secticn), we can compartmentaiize the
SYStem o creats a ring of compartments, The diffusion tenm with
discretized compartments becomes ¥, dj(u—uy). This system was
- =k
introduced by Alan Turing (1952) uJJ study the destabilizing effect of
diffusion in morphogenesis. (Turing used two diffusing signals.)
Othmer and Scriven (1971} examined how the dynamical properties

~of this reaction-diffusion system depended on the topology, studying

tings and lattices in what was a continuous analog to the studies of
Kiirten (1988) on lanice automata cited above.

Can we expect such continuous dynamics to improve our CR-
subsystems? ‘We claim that it should be possible by using a neuronal
model based on the Turing morphogenesis equations. This model is
called the reaction-diffision neuron (Kirby and Conrad 1984; Kirby,
Conrad and Kampfner 1981), a continuous extension of a discrete
linear qnit used in a ‘Darwinian brain model. These nenrons take

- input signals and map them into continuous gradients, which evolve

by reaction-diffusion equations. Gradients are read by spatially fixed
sensors, whose response induces the firing of the nenron. With suit-
abie dynamics one reaction-diffusion newron can play the role of an
entire CR-subnetwork. '

- Once we allow continuous dynamics to enhance the CR sys-
tem, we can consider adaptation of this dynamics. Recall thar in the
experiments discussed so far, the CR-subsystem was random and
fixed, except possibly for sporadic localized genetic modification.
This allows the context dynamics.to evolve concumently with the
representation. We can view this idea of context as analogous to
some phenomena observed in other research. In the continuous case
we can have formation of opological feamres such as those that arise
in Turing-type morphogenesis systems, e.g., the stripes of Meinhardt
and Gierer (1980). A well-known neural analog is in the work of
Amari (1977) on pattermn formation in neural felds. A neural field
changes the representation of neurons from a set of finite units to a
manifold of mathematical points. Firing signals do not propagate
along connections, but spread out along the manifold, governed by
equations of the form:

T _a—"%fﬂ. = —u(nLy) + [wiup) e .H]dap’ + input em@)
The weighting "matrix" w(L ') intemal to the neural field is fixed
in advance; only the input weights change (according to a Hebbian
algorithm), Efferents from the neural field in a sense use the
acquired patterns as state information, since the topographic arrange-
ment on the field is alse a kind of repository for input history. Letus

* call the kind of input context in these morphogenesis and neral field

models topographic context. This contrasts with the concept of
scrambled context used by our CR systems to Tepresent history.

69



z(y

= Jx—hy+JV-DVu+R(u)d!
y = o'.[juzd‘j.l - B]

Figure 7. The dynamics of the reaction-diffusion neuron.

CONCLUSIONS _

Scrambled and topographic context promise to be important
notions in the theory of sequential leaming. We have shown thar the
requirements for a good comtexi-reverberation subsystem do not
include the high connectivity required for connectionist solutions to
other problems. This may encourage molecular electronic hardware
implementations (Hong 1986). Low-conmectivity nefs of linear
threshold functions with nearest-neighbor topology provide long
cycle lengths and are an effective means for providing scrambled
context informatien to a single-layer learning algorithm for learning
the parity dynamics. ‘We believe that such a result is encouraging for
the smdy of non-symbolic AoN-connectionist cONUANOUS SYSEMs for
solving "real" amificial intelligence problems. Far from merely pro-

viding a new technology for machine leaming, the CR system has -

producsd fertile ideas enabling a more profound understanding of the
learning problem iself. " -
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