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ABSTRACT

Inductive inference is the process of inferring a description
a function from finite subset of its graph. Connectionist
inductive inference typically involves gradient descent algo-
rithms in weight space. When inferring functions of
unbounded sequences such algorithms nm on recurrent nets
and become computationally expensive. In this paper we
present a broader framework framework for inductive infer-
ence, and show that sueh problems admit a "dual” approach,
which can be phrased in terms of the simulation-as-
homemerphism perspective in systems theory, Whereas the
usual approach adapts the dynamics of the net to match the
dynamics of the target system, the dual approach keeps the
dynamics fixed and learns a homomorphism from the net 10
the target. The larer technique is promising because of its
efficiency and its direct applicability to learning by continu-
DUS NON-CONnectionist systems, such as neural fields.

1. INTRODUCTION

Meural networks have become widely kmown in the
past decade primarily because they embody simple parallel
heuristics for approximating functions f: 4 — B. In most
supervised learning approaches, elements of the function
domain are pushed through a feedforward netwerk, and sub-
ject 1o an interleaved sequence of linear transformation and
componentwise squashing. The actual value of the function
om these points is compared © the net ourput, and updates 1o
net paramelers are made o lower the eror on subsequent
iterations. In many applications, the domain consists of
fixed-length vectors; A =X". Aliernarively, when the
domain consists of sequences of arbirary length, 4 =X,
each item of the sequence may be passed through the net in
a time sequence. For non-mivial funetions of sequences, the
net will need w keep state informadon, and will thus often
have recurrent commections. Generalizations of feedforward
gradient algorithms 1o the recurrent case are straighforward
bur expensive. (See [1] for a recent perspective.)

Omne problem ofien 1ackled by recurrent nerwarks is
that of learning a regular language L o X7, where X is a
finite set of irreducible symbols. This may be phrased as
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leaming a function X = [(,1). The everyday
"RMS/max-emor” approach to supervised leaming is too
crude for a careful analysis of this problem, so in this paper
we turn to the new field of distriburion-free learning theory
[2], also known as Probably Approximately Correct (PAC)
learning. We wami o explore algorithms that can leamn f
approximately with high probability. We will imagine that
there is an unspecified probability measure p over X~
according to which rraining and test examples are drawn.
Smce this i5 a countably infinite set, a uniform disoibution
cannot be defined. Realistic disributions would tend w
favor short "real-world” length patterns. Let Wl ) denote the
measure of a subser L ¢ X* . Essentially this assigns a
number 0 each of the uncountably many languages over X.
In PAC-learning, we wish to find an algorithm such that, for
given accuracy £ and confidence 8, will process the set of
samples and, with probability less than &, conswuct &
representation for a subset L which differs from L on a set
of measure greater than €.

The representation of the concept class is crucial. We
may attermnpt to learn regular languages by searching spaces
symbolic representations, such as regular expressions, tran-
sition graphs, and so on. Connectionism attempts 1o use the
weight spaces of recurrent networks as ils represenfation
space, performing gradient descent 1o minimize error on
small raining sets in the hope of capnring the entire
comrect, typcally infinite, regular language, within the
dynamnics of the net. In the following sections, we show that
the actual mechanisms for such algorithms can be fruidfully
analyzed in a simulationist perspective.

2. LEARNING AND SIMULATION

In sequendal leamning, as discussed above, we wish
to learn a fimction of sequences. In the most general case,
the range of the finction is also a sequence. We feed in the
terms of the sequence o the trained sysiem, and; con-
currently, expect the output sequence Lo be correct. We will
speak of a targer sequental behavior [ X7 — 17, We wish
to have a system (call it the "net™) match this functon, It is
productive W view this as the learning of a dynamical sys-
tem by a dynamical system. Al the practcal level, we only
demand a crude behavioral match between the net and the
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targel. This is characterized in the Zeiglerian simulation
framewark as "L/0 Function Observation” [3]. We need ©
find a net behavior f7, an encoding g, and e surjective
decoding k such that following diagram commutes.
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In PAC-learning, we expect this diagram will not smictly
commute; the chances of perfect learning may be nil
Bringing in the PAC-learning terminology, given any two
functions r,5:A — B, define

Er(rs)=(xeA | rix)=s(x) ). (1)

We would like an algorithm which, when given a function [
in a certain concept class (e.g. characteristic functions of
regular sets), will find maps 7, p and & such that

Pmb{j.t[ Er(f, kufag)] > s} < & . (2)

For small e, &, this inequality says that the diagram above
"probably approximately commutes”.

In the Zeiglerian approach, a modeler/scientist would
posit 2 state space for the target sysiem. It is at this point
that we introduce the specific narure of the dynamics. Since
we wish 10 learn a regular language, we will interpret this as
learning a finite-state automaton® The adaptive system
which is doing the leaming may be a discreie recurrent net
of threshold gates, or a nonlinear high-dimensional continu-
ous dynamical system. In this section, we will merely speak
of a dynamics & on a phase space, with ajectories per-
turbed by inputs.

In Zeiglerian terminology, we have now moved o
the level of the "I/O System Morphism”. It is useful at this
juncrure 1o adopt the language of transformation monoids,
which has been used to stdy representation change in clas-
sical artificial intelligence [4). View § as a collection of
maps 0 — (. Lat us call this collection M, where we have
used the identification

8.(g) = 5(g, w). 3

Under this idemification, we can view the DFA a5 &
transgformation monoid (Q, M). Let A= (0, X, ¥, §, @) and
B= (0 X Y, &, ) be two DFAs, sharing the same mput
and output sets for simplicity. We say A is simulated by B if
there exists a partial surjection &' — O such that for each

* A deterninistic fimte-siate amomaton (DFA) A = (2. X V. & @)
consist & a finite ae of sutes 0, a finite sex of inputs X, » finte set of
oatputs ¥, 2 tangnon functon & O x X — ), and an ourpur functon
ax X =Y. 1tis eonveuent 1o use the ransitive closure of the transi-
ﬁmfﬂhmﬂ'.‘Elx'-ﬂﬂ.whi.thlivaumgﬂlumw}ﬂthmin-
PUL sequence drives 4 given sule.
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weX" there exists 2 ue X making the following diagram
SEMi-COMUMuLE;

o

L |

o

Q Q

8

W
The “semi-commutativity” means that whenever &, -8 (g°)
is defined, it equals -5, (¢") for all " €@’. Inmitively,
think of the “big” DFA (' simulating the "small” DFA (),
by using & many-one representation. A schematic view of
this idea, when ¢ is total, is shown in Figure 1.

The conditions in the simulation definition yield
three requirements. (i) A state in 0’ cannot represent more
than cone state in . This follows from ¢ being a function.
The reverse is legal, however, since ¢ need not be imjective.
(i) The simulation should not lose information. This means
that two trajectories cannot converge on a single state in Q°
unless they do so in Q. The reverse is legal, and is the
essence of “quotient learning” described below. (i) The
simulation should preserve "relevance”. In other words, a
trajectory inside the domain of ¢ cannot move out of it later.
Again, the reverse is legal. It should be noted that even
though we are tying to keep the mathematics simple by
presenting the definitions in automata theory, the ideas can
be rranslated into &n arbitrary theory of dynamical systems.
In this paper, the state space @' will belong to our leamning
machine; the state space @ will be a finite space holding th2
the behavior our machine is attempting to learn.

3. STATE-SPACE LEARNING

A simple recurrent network for the discrete sequen-
tial associations X(t) = Y(tf) can be represented by the
eguations '

q(t) = s[ Ax(r=1) + Bq(r-1) + Cy(t-1) - 8] (4)
yir) s[ Ug{r) + Wx(t=1) + Vy(r-1) — 1 ] (5)

Here the vecior g represents the states of a recurrent hidden
subnerwork, which mediates between the input and output
vectors. Note the similarity to the state space equations for 2
linear system, the essential difference being the interposi-
tion of & function s. This nonlinearity is typically & hard
(e.g., sgn) or soft (e.g. tanh) siep. The vectors € and %
serve as thresholds. (In many presentations, the affine
ransformauon inside this dynamics is made linear by &
homogeneous transformation, raising the dimensions by
one.) The components of the mamices are interpreted as
connection weights. A, B, and C are afferent o the hidden
recurrent subnet, and U, ¥, and W are afferent wo the ourput
units.

In the familiar supervised leamning paradigm, we cal-
culate the difference eft) berween the net ourput ¥(t) and a



teacher signal ¥*(t). Typically the weights are modified by
descent along a gradient of the form

Gk |
g =VE lein)?. (5)
Fly
Whereas the expression for this gradient neatly unfolds tw
outer products for feedforward nets (giving rise to the back-
propagation rule), with recurrent nets the updates are non-
local, “three-subscript” quantbes. As such, the recurrant
extensions of backpropagation are much more expensive in
computation space and tme. Mevertheless, the research field
is exceedingly active, and new results are promising.

Let us examine the state space equations more care-
fully. Adaptation of the matrices AB,C is on a different
footing than the others. The state space of the q's may be of
vastly greater dimensions than the input output space.
{A,B,C) determines the dynamics on this space. This
dynamics tells us how the net remembers its input history.
These are precisely the matrices that are computationally
expensive (o ain. We can identify them with the ransition
function & in the previous section. Recurrent backpropaga-
tion and similar algorithms oy to make the diagram above
(semi-)commute by adapting this state space dynamics §'.
We shall call this state-space learning,

Cm the other hend, the matix U defines the mapping
from the state space of q's © the outputs. U is ained to
function as a vector of feamre detectors which look at the
raw slale space, and carve it up lo capmure the correct
behavior. If we pretend that q is like an external input, the
processing by U is the same as in a single-layer feedforward
net, the most racteble of all newral nerwork architecmres.
Again referring (o the diagram above, by adapting U we are
indirectly adaptng the morphism ¢ berween the siate
spaces. Adapting the homomorphism is thus “dual” w
adapting the dynamics,

Since the equivalence classes of elements of O that
are mapped 1o the same point in { form a quotient space
under the homomorphism, we will call this technique
quotient-space learning. Hers one leams a quotient struc-
ture on (3, rather than & dynamics &, This is analogous to
“lumping” in the simulationist framewark.

4. QUOTIENT-SPACE LEARNING

That state space learning is possible, if not efficient,
is attested o by the volume of recurrent network learning
research, of which we have cited only one [1] as a pointer to
the rest of the field. Conversely, because learning need only
involve 2 adapting a single layer, quotient space learning is
efficient, but is it possible? It not intuitive that any reason-
able leamning can be done by changing only a homomor-
phism, rather than directly manipulating the dynamics.

Ome effort that can be viewed as a step in this direc-
tion is the experimental study of Gallant and King [5]. They
use an architecture we can describe here by equations {4,5)
above. This amounts to having an internal recurrent net-
work with fixed random weight matrices A, B, C: and a sin-

gle ourpur layer with adaprable weights consisting of the
concatenation of W, U, and V. Gallanr and King present
the fixed random recurrent subnet as & kind of temporal ver-
sion of the Rosenblan technique of randomly boosting mput
patterns nto a higher dimensional space 10 increase the
chance of linear separabiliry. The outpul processing can
then employ only one layer, and use a percepiron-like algo-
rithm to associate the state of the internal recurrent net with
input patterns.

The work of Kirby [6] and Day [7] has expanded on
this approach of using a fixed, random subnerwork to hold
representations of input historiss. Cme key discovery is that
the global O(n?) connectivity mside the random nets is not
necessary, and that local O(n) connectivity slows down the
learning time only slightly, while reducing space require-
ments by at least an order of magnitude. In fact, the matrix
B in eguation 4, can be reduced to a narrow band marrix, in
which each unit has from 3 or 4 nearest neighbors. Further,
one can set C=V=0. Systematic studies showed learning a
mapping of finite sequences (the "robatic control task™ of
Gallant and King) proved simple, whereas learning 2- and
3-state finite automata proved considerably difficult, i that
generalization off a raming set was rarely better than 30%.
Nevertheless, the generalization was present and significant,
which was surprising, in that one might expect the percep-
tron layer to merely memorize a finite number of associa-
ions.

The implication of these studies was to show that one
could move beyond a connectionist net o a system with
only local commectivity. Instead of a lamice of threshold
units, we studied a neural field, with excitation propagaring
according to reaction-diffusion equations. This is iso-
morphic to the nraneuronal dynamics model of Kirby,
Conrad and Kampimer [8]. Figure 2 shows the architecnure.
By employing direct analog devices built on artificial mem-
branes, one could realize this system cheaply, perhaps. This
suggests the rony that an uncountable number of neurons
may be cheaper to implement than a large finite number.

Other research outside the supervised learning para-
digm may also be usefully analyzed from this perspective.
For example, the active perception model of Whitehead and
Ballard [9] constructs an implicit morphism between exter-
nal and internal DFAs. The problem they identify as per-
cepiual aliasing, the representation of (wo external states by
one internal state, is exactly what one prevents when one
demands ¢ be a (partial) function rather than a relation.

5. CONCLUSIONS

This perspective opens up many fundamental
research questions, of which we name only a few: First, a
mathematcal study of when a random DFA can admit a
quotient structure isomorphic o a given DFA must be
undertaken. This is an interesing complement w the
approach of Zimmer, er al. [4], who study the boostng of
search spaces into larger but computationally more tractable
spaces that are wreath products of elementary ones. Second,
in lcaming a function on X °, our apparent quotient strucmre
may collapse for very long strings. We may need to investi-



fga.l: fuzzy gquotient spaces. Third, the output layer functions
as @ feawre detector whose input space may be a manifold,
rather than the vector spaces typical of panern recognition.
What can we prove about feanure detectors on manifolds?

Finally, the curious message of this approach is that a
machine learner, as an sdaptive simulator, might just ry
some “creative Jumping” i order to model the external
world. There is a fascinating analogy to a recent theorem of
Pumam [10], siating Every open system is a realization of
every finie awtomaion. (This is used to refute the philosoph-
ica] position of computationa] functionalism.) The theorem
is proved by pointing out how any physical stale space can
be lumped any way we like, 50 thal we can make il resemble
any given system. We believe thar "Pumamizing” complex
dynarmucal sysiems may in fact be a realistic technology for
machine leaming,.
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Figure L. A high-dimensional dynamical system (top) simu-
lating a finite-state automaton. This simulation relation can
be learned n ™wo dual senses: (1) the time evolution of the
simulating system (iop) can be adapted under a fixed tan-
sparent homomorphism &; ar (2) the dynamics of the simu-
lating system can be fixed, m:!:d the homomaorphism & can be
adapted 1o partition its state space so that the quotient
dynamics is iscmorphic 1o me"qﬁnim automaton. The former
approach is typical of :nnnr::tinﬁmsr. inductive inference,
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Flgure 2. A neural field serving as & context-reverberation
subsysiem, replacing a random recurrent net. Neuvral field
states hold compressed, scrambled representations of the
input histories. In inductive inference of regular languages.
the neural field state space Q' is mapped o the target finite
automaton's stale space 2 by & homomorphism learned &t
the perceptron layer. This amounts to forming a guotient
map by slicing images of the field’s state space with hyper-
planes,



