
CSC 360 Programming Assignment #2 

Due date: Monday, September 8 

 

In this assignment, you will create a Vehicle class and then subclasses to demonstrate the use of 

inheritance.  The vehicles defined will all be military vehicles for use in an armed conflict scenario to 

determine the best vehicle(s) for that scenario.  Below is the hierarchy of classes to implement.  The 

specifications for the classes are described below along with the UML on the next page. 

 

 
 

The subclasses of Plane, Helicopter, Tank and TroopCarrier are annotated by dashed lines.  The 

subclasses of these classes can be thought of as either subclasses or types.  The difference being that you 

can either implement these as subclasses or by using logic within the class constructor to deal with the 

difference between the types.  The reason that you do not have to create subclasses is that the differences 

between the type (e.g., Plane) and the subtypes (e.g., Bomber, Fighter, Stealth and VTOL) will only be in 

the specific values of the class’ instance data but not in any new instance data or methods.  It is left up to 

you whether to implement these subtypes as subclasses or through logic (explained later).  

 

The Vehicle class defines the common instance data that will be shared among all vehicles and common 

methods which are accessor methods for each of the instance data, a toString method and a 

getBattleUtility method which returns an int value of the worth of the Vehicle given this war game 

scenario.  The two subclasses of Vehicles are GroundVehicle and FlyingVehicle. GroundVehicle adds the 

instance datum roughTerrainCapable, FlyingVehicle adds instance data refuelInFlight and vtolCapable 

(“Vertical take-off and landing” meaning the vehicle does not require a runway to takeoff or land).  For 

GroundVehicle, we have subclasses of Tank, TroopCarrier and Jeep.  For FlyingVehicle we have 

subtypes of Plane and Helicopter.  Although Helicopter does not add any instance data, Plane has an 

additional instance datum called stealth.  Jeep does not add any instance data over GroundVehicle but 

Tank adds instance datum weight and TroopCarrier adds armed.  For some of the classes beneath Vehicle, 

you will need to modify the constructor and toString methods because of added instance data (for the 

constructor, you have to initialize them, for the toString to report on the values of the added instance 

data).  Whenever overriding, use @Override and then have the method start by calling its parent class 

method (e.g., super( ) for the constructor, super.toString( ) for the toString).  For example, if a Vehicle 

can inherit from its parent the toString method but also needs to report on the variable 

roughTerrainCapable, you can accomplish this as follows. 
 @Override 

 public String toString( ) { return super.toString( ) +  

“ and is rough terrain capable: ” + roughTerrainCapable; } 

 

As you will see below, Vehicle’s getBattleUtility merely returns -100.  Override this in GroundVehicle 

and FlyingVehicle and, aside from new accessor methods, implement getDistance( ) to compute the int 

distance that the Vehicle can travel.  All subclasses will override getBattleUtility and most will override 

getDistance (but not all).  Details for these methods are shown in a table on page 3-4 of this assignment. 

 



 

 

The Plane, Helicopter, Tank and TroopCarrier classes can be of different subtypes (e.g., a Plane can be a 

Bomber, Fighter, Stealth or VTOL).  You can implement these as subclasses if you wish.  However, you 

will find that the subtypes do not introduce any new instance data or require changes to the getDistance 

and getBattleUtility methods.  The only difference between the subtypes of one of these classes is in the 

values of its instance data.  Therefore, you can also implement these types by using nested if-else logic in 

your class’ constructor.  For instance, a Helicopter can either be a normal Helicopter, a TroopHelicopter 

or an AttackHelicopter.  You might implement these variations in Helicopter’s constructor as follows   

 // assign the values that all Helicopters have 

 if(type.equals(“Attack Helicopter”) { /* assign specialized values for attack helicopter */} 

 else if(type.equals(“Troop Helicopter”) {/* assign specialized values for troop helicopter */}  

 else {/*assign values of a normal helicopter */} 

  

Below is the UML specification for all of the classes.   

 

Vehicle 

-type: String 

-heavilyArmored: boolean 

-capacity: int 

-speed: int 

-armament: int 

----------------------------------------------------- 

+Vehicle(type: String) 

+getType( ): String 

+getHeavilyArmored( ): boolean 

+getCapacity( ): int 

+getSpeed( ): int 

+getArmament( ): int 

+toString( ): String 

+getBattleUtility( ): int 

 

GroundVehicle extends Vehicle 

-roughTerrainCapable: boolean 

----------------------------------------------------- 

+GroundVehicle(type: String) 

+getDistance( ): int 

+getBattleUtility(…): int // details described 

later 

@Override:  toString, getBattleUtility 

 

Jeep extends GroundVehicle 

+Jeep(type: String) 

@Override getBattleUtility 

 

TroopCarrier extends GroundVehicle 

-armed: boolean 

-------------------------------------------------------- 

+TroopCarrier(type: String) 

@Override getBattleUtility, toString 

Tank extends GroundVehicle 

-weight: int 

---------------------------------------------------------- 

+Tank(type: String) 

@Override getDistance, getBattleUtility, 

toString 

 

FlyingVehicle extends Vehicle 

-refuelInFlight: boolean 

-vtolCapable: boolean 

----------------------------------------------------- 

+FlyingVehicle(type: String) 

+getVtol( ): boolean 

+getRefuelInFlight( ): boolean 

+getDistance( ): int 

@Override getBattleUtility, toString 

 

Helicopter extends FlyingVehicle 

+Helicopter(type: String) 

@Override getBattleUtility, toString 

 

Plane extends FlyingVehicle 

-stealth: boolean 

--------------------------------------------------------- 

+Plane(type: String) 

@Override getDistance, getBattleUtility, 

toString 

 

 

 

 

 

 

 

 

 



 

 

What follows is a table illustrating the initial values of the instance data for the various classes.  The grey 

shaded boxes indicate that the particular instance datum does not exist in that class.  Note that Tank is a 

parent class but can also be “Standard Tank” or “Normal Tank” and the same with Helicopter.   
 Vehicle Heavily 

armored 

Capacity Speed Armament Armed Rough 

terrain 

capable 

Refuel 

in 

flight 

Vtol 

capable 

Stealth Weight 

Vehicle false 1 0 0       

Ground 

Vehicle 

true 4 50 10  false     

Flying 

Vehicle 

false 1 200 2   false false   

Jeep false 4 75 5  true     

Tank true 4 40 20  false    2 

Light Tank true 2 60 10  true    1 

Medium Tank true 4 50 25  true    3 

Heavy Tank true 4 30 30  false    5 

TroopCarrier true 25 60 10 false true     

Armed Troop 

Carrier 

true 8 50 30 true true     

Light Troop 

Carrier 

true 20 70 10 false true     

Helicopter false 8 75 3   false true false  

Attack 

Helicopter 

true 2 120 6   false true false  

Troop 

Helicopter 

false 20 80 2   false true false  

Plane false 8 200 2   true false false  

Bomber true 5 120 40   False false false  

FighterPlane true 2 300 5   True false false  

VTOLPlane false 2 200 2   True true false  

Stealth false 4 150 5   false false true  

 

The following table provides the information for the getDistance and getBattleUtility methods for each 

class.  The getBattleUtility class receives 6 boolean variables and an int.  These are in order:  night 

(boolean), rough terrain (boolean), need ground support (boolean), need heavy arms (boolean), anti 

aircraft guns in vicinity (boolean), need equipment dropped (boolean) and distance (int).   

 

Type getDistance getBattleUtility 

Vehicle Not implemented Returns -100 

Ground 

Vehicle 

If heavily armored speed * 30 

else speed * 45 

Start with score = 0 

If rough terrain and vehicle is not rough terrain 

capable then -5 else +8 

If need ground support then +capacity - 1 (the value 

of capacity - 1) 

If distance > getDistance then -10 

Flying 

Vehicle 

If refuel in flight then 10000 

else speed * 10 

Start with score = 0 

If distance > getDistance then -15 else +30 

If rough terrain then +5 

If ! need for ground support then +5 

If need ground support and vtol capable and 

capacity > 2 then +capacity (the value of capacity) 

Jeep Inherited from Ground Vehicle super.getBattleUtility(… ) + each of the following 



 

 

If anti aircraft guns then +10 

If need equipment dropped then +8 

If night then -5 

Tank super( ).getDistance( ) – 

1000*weight 

super.getBattleUtility(… ) + each of the following 

if anti aircraft guns then +12 

if need heavy arms then +armament*3 (value of 

armament multiplied by 3) 

if rough terrain and ! rough terrain capable then -25 

if distance > getDistance then –(distance – 

getDistance) / 105 

Light Tank Same as Tank Same as Tank  

Medium 

Tank 

Same as Tank Same as Tank  

Heavy Tank Same as Tank Same as Tank  

TroopCarrier Inherited from Ground Vehicle super.getBattleUtility(…) + each of the following 

if need ground support +capacity*2 

if distance <= getDistance then +7 else -33 

if need heavy arms and armed then +armament else 

+5 

if need equipment then +10 

Armed Troop 

Carrier 

Same as Troop Carrier Same as Troop Carrier 

Light Troop 

Carrier 

Same as Troop Carrier Same as Troop Carrier 

Helicopter Inherited from FlyingVehicle super.getBattleUtility(…) + each of the following 

if night +5 else -4 

if need ground support and capacity < 5 then -4 else 

+20 

if need heavy arms then +armament * 2 

if anti aircraft guns -15 

if need equipment then +8 

Attack 

Helicopter 

Same as Helicopter Same as Helicopter 

Troop 

Helicopter 

Same as Helicopter Same as Helicopter 

Plane If refuel in flight then 10000 

Else if heavily armored then 

speed * 15  

Else speed * 25 

super.getBattleUtility(…) + each of the following 

if anti aircraft guns and not (heavily armored or 

stealth) then -10 

if night +6 

if need heavy arms then +armament 

if need equipment then +5 

Bomber Same as Plane Same as Plane 

FighterPlane Same as Plane Same as Plane  

VTOLPlane Same as Plane Same as Plane  

Stealth Same as Plane Same as Plane 

 

Implement a WarGame class which creates instances of various classes (see the table below) and tests 

Objects of those classes against the three scenarios.  Submit for this assignment all of your classes (copy 

all of the classes into one text file for easier output and to save paper) and the results of running the three 

scenarios.  If you submit this assignment electronically, again please copy the text of all of your classes 



 

 

into a single text file (or a word document).  The three scenarios are given in this table.  For each 

scenario, create an object of each type of Vehicle listed, obtain the Vehicle’s toString output and the 

result of getBattleUtility when passed the parameters listed in the rightmost column.  These parameters 

are in order:  night, rough terrain, need ground support, need heavy arms, anti aircraft guns in area, 

distance (an int).   

 

Scenario 1 attack helicopter, troop helicopter, light tank, medium tank, 

heavy tank, bomber, vtol 

T, T, T, T, F, F, 2500 

Scenario 2 Flying vehicle, helicopter, attack helicopter, troop helicopter, 

plane, bomber, fighter, vtol plane, stealth 

F, T, F, T, T, F, 1000 

Scenario 3 Ground vehicle, tank, light tank, medium tank, heavy tank, 

jeep, troop carrier, armed troop carrier, light troop carrier 

F, F, T, T, F, F, 4000 

 


