
CSC 360 Programming Assignment #1

Due date: Friday, August 29

This assignment will test your ability to write several classes using proper forms of information

hiding (visibility modifiers), message passing and arrays of objects. It will also test your ability

to read and understand UML notation. Specifically, you will implement an “Adventure Game”

by defining a series of classes:

 Fighter

 Weapon

 Armor

 Treasure

In addition, you will have a class with a main method that utilizes these classes to play the game.

The main method will primarily interact with the Fighter class, and the Fighter class will interact

with the other classes. Thus, Fighter will contain most of the functionality for your program.

Main will create an array of Fighters, and the user as a Fighter. Using a for loop, main will

iterate through the array of Fighters and the user will fight each one, one at a time. After each

fight, assuming the user wins, main will display a menu of options for the user to select the next

action. These are:

1. Utilize a magic potion or a scroll (both of which will be among the Treasure)

2. Rest

3. Quit

4. Fight next Fighter

Note: You may add additional choices if you want.

The Fighter class consists of the following instance data: a Weapon, up to two pieces of Armor

(one of which will be a shield if available), some Treasure, hit points and a random number

Generator. Your constructor will receive all of these except for the second piece of Armor which

will initially be null. Aside from accessor methods and a toString, the other methods are

described here. A method called fight(Fighter f) will cause this Fighter to fight the Fighter f.

Each Fighter will take turns. The number of attempts of an attack per turn will be based on this

Fighter’s Weapon which has an attacksPerTurn value. For each attack, generate a random

number 1-20. If this number > f’s defense (as determined by f’s Armor), then you score a hit.

The amount of damage is a random number generated between the weapon’s minDamage and

maxDamage. For instance, the user will initially have a sword with 2 attacks per turn and

damage of 1-8 per hit. Both Fighter’s (this and f) take turns with the user (this) going first. If f

dies after the attack, f does not get its turn, to test to see if f is still alive. The isAlive method is a

Boolean method that returns true if f’s hit points > 0, false otherwise. If you hit f, use

takesDamage to pass the number of hit points of damage to f.

Once the user defeats the Fighter (assuming the user does), the user can take f’s Weapon and

Armor if 1. The item is a separate item from its body (e.g., if the Fighter has a Weapon of claws

or an Armor of hide then the user cannot take it), and 2. It is better than what the user currently

has. This requires that you implement a isBetter methods in both Weapon and Armor. For

Armor, one piece is better if it has greater protection. A Weapon is better if its average amount

of damage is greater than the other. For instance, if one Weapon has 4 attacks per turn with

damage 1-5 and another has 2 attacks at 1-8, then the average is 4 * (1 + 5) / 2 versus 2 * (1 + 8)

/ 2 or 12 versus 9. Also, if the user defeats f, then the user takes all of f’s Treasure. As Treasure

will be implemented as an ArrayList, you can use addAll as in
this.treasure.addAll(f.getTreasure());

Now that the user has defeated the Fighter and taken its stuff, display a menu of choices as

shown above (1-4). If the user chooses to rest, the user’s Fighter will regain a random amount of

hit points (11-20) but the user might be attacked by the next Fighter (50% chance) interrupting

the rest period and therefore will not reclaim any hit points. Note that the user can only rest once

in between Fighters. If the user has any potions or magic scrolls, the user can drink/cast them.

The user can use as many as he or she has their Treasure list. After each one is used, remove it

from the Treasure’s ArrayList. Each potion will heal the user of hit points as follows:

 30% chance of healing by 5-10 hit points

 40% chance of healing by 11-20 hit points

 20% chance of healing by 21-30 hit points

 10% chance of hurting by between 1-20 hit points (note that this could kill the user!)

Each scroll will either double the user’s hit points (60% chance), do nothing (35% chance) or kill

the user (5% chance).

Upon quitting, output your final hit points and the number of Fighters you successfully defeated.

Populate the game as follows:

The user:

 Weapon: Sword, 2 attacks per turn, 1-8 hit points of damage per hit

 Armor: leather armor, protection 10

 Treasure: 2 potions, 1 scroll

 Hit points: 50

The array of Fighters

0. Orc (Hit points: 22, Weapon: dagger (3, 1-4), Armor: chain mail (12), Treasure (gold, 1

potion)

1. Nest of snakes (Hit points: 12, Weapon: venom (1, 4-20), armor: none (0), Treasure (1

potion)

2. Troll (Hit points: 35, Weapon: hands (4, 1-8), Armor: hide (14), Treasure (gold, silver,

2 potions)

3. Berserker (Hit points: 28, Weapon: sword (4, 1-4), Armor: Skin (3) & Shield (add 2 to

defense), Treasure (silver, 1 potion) (the Shield can be added by the user)

4. Ninja (Hit points: 40, Weapon: super sword (4, 2-8), Armor: chain mail (14), Treasure

(2 potions, 1 scroll)

5. Dragon (Hit points: 25, Weapon: claws (2, 11-20, Armor: Skin (14), Treasure: gold,

silver, silver, silver, 1 scroll)

6. Doppleganger(Hit points: same as you, Weapon: same as you except only 1 attack per

turn, Armor: same as you for main armor but also a Heavy Shield (add 4 to defense),

Treasure: same as you)

7. Wizard (Hit points: 150, Weapon: lightning bolts (1, 21-40), Armor: magic aura (15),

Treasure: gold, gold, gold)

UML for the classes:

NOTE: you cannot construct the Treasure object by passing it a list of Strings as in

new Treasure(“Gold”, “Gold”, “Gold); or
new Treasure(new ArrayList<String>(“Gold”, “Gold”, “Gold”);

Therefore, you will have to create an ArrayList in main before you instantiate your Fighters and

add the Strings to the ArrayList, then pass the ArrayList to the Fighter’s constructor, clear the

ArrayList and add the next Fighter’s Treasure to it, etc.

Skeleton of main program:

 // instantiate a random number generator to pass to each Fighter

 Fighter me = new Fighter(…);

 Fighter[] them = …

 int n=0; // n is the Fighter who is next up

 while(n<8&&me.isAlive()&&userChoice!=3&&userChoice!=4) {

 me.fight(them[n]);

 if(me.isAlive()) {

 // display menu and get user input

 // inner while loop

 // do the operation selected, if they choose rest, determine if the next Fighter

 // appears to fight early, then exit inner loop

// else if choice is 3 or 4, exit inner loop

// display menu and get user input

 n++;

 }

 If userChoice is 3, indicate that the user quit early

 Otherwise if me.isAlive() output that the user wins and output the user’s final Treasure

 Otherwise output that the user lost and how many Fighters the user killed before dying

Revised

