
CSC 260L: Java Programming Lab 2

Programming Exercise 2:
Assignment Statements

Purpose: Declaring/initializing variables, using assignment statements, and

using some of the Java standard classes.

Background readings from textbook: Liang, sections 2.5–2.11.

Due date for section 001: Monday, January 25 by 10 am

Due date for section 002: Wednesday, January 27 by 10 am

Overview

The ability to use data stored in a computer’s memory in an intuitive way is essential in writing

computer programs. However, the way you use this data is fraught with hazards since the same ones

and zeroes that the computer sees can be interpreted in many different ways. For example, the binary

number
 1000001

may represent the integer 65, it may represent the letter A, it may be a part of a program instruction

like “add”, or it may represent a memory address storing a datum.

In Java you can use a memory location just as you would a variable in mathematics. It has a name,

and you manipulate that name as a changeable quantity. Java requires that you declare the type of

data you plan to store in that variable before you ever use it. Then, each time you use that variable

the compiler checks to see if that usage is appropriate for the type you declared your items. Here are

a few of the data types you can use.

Java Type Name Designates Example

char Single character 'A'

int Integer number 12

long Large integer number 10
20

double Floating point number 3.14

String String of characters "CSC 260"

Part 1: Java Examples

1. Declaring variables.

int miles;

double gallons, mpg;

Data type of values stored in

the following variables.

Variable name.

You can declare two

or more variables of

the same type in one

statement.

CSC 260L Programming Lab 2

2. Assigning values to variables.

To do the computations you need to use Java’s arithmetic operators:

Operator Meaning Example

+ addition 7 + 5



 12

- subtraction 7 - 5



 2

* multiplication 7 * 5



 35

/

integer division

or

floating point division

7 / 5



 1

 or
7.0 / 5.0



 1.4

%

modulo (or mod), which is

the remainder of an integer

division

7 % 5



 2

Most of these operators are straightforward. For instance, if you want to add three values, x, y, and

z, and store the result in sum, you would do sum = x + y + z; If you want to add x and y and

multiply the result by z and store the result in total, you would use total = (x + y) * z;

The parentheses are required here because the order of operator precedence is that * happens before

+, so without the parentheses, total = x + y * z; would perform y * z, add x, and store that

value in total.

The mod operator (%) gives you the remainder of an integer division. For instance, 5 / 2 is 2 ½. So

5 % 2 is the remainder, or 1. 16 % 2 is 0 (there is no remainder) while 16 % 9 is 7 (16 / 9 is 1 7/9).

The challenging operator to use is division if both the numerator and denominator are integer values.

Consider 16 / 9. This gives you the value 1 because the result, 1 7/9 has a quotient of 1 and a remainder

of 7. Normally, if we wanted to do 16/9 and store the result as an integer, we would probably round

up giving us 2 instead of 1. Now consider the following assignment statement where z is a double,

and x and y are int values of 16 and 9 respectively.
 z = x / y;

What does z store? If you did this on a calculator, you would get 1.77777… (or about 1.778). But in

Java, z would store 1.0. Why? Since x and y are both int values, x / y is an integer division meaning

that the result is stored as an integer. The integer division of 16/9 is 1. We are not interested in the

remainder when we use /. Since z is a double, the result, 1, is converted to a double, or 1.0. So we

lose some accuracy. We need to force Java to perform a double division, not an integer division.

How? We need to perform a cast to convert either the numerator or the denominator to be a double.

A cast does not actually change the variable’s type, it merely changes the number being sent to the

division circuitry in the CPU. A cast is done by placing (type) immediately before the variable

name where type is the type you are casting to (double in our case). Our assignment statement

becomes z = (double)x / y; or z = x / (double)y;

miles = 123;

gallons = 5.5;

mpg = miles / gallons;

Assign literal values to

variables.

Or assign values of

expressions.

CSC 260L: Java Programming Lab 2

Part 2: Common Pitfalls

1.

2.

3.

 4.

 5.

Part 3: Problem

You have been asked by Black and Gold Construction Company to write a program to help them

compare construction costs on different projects. Your program computes the cost per square foot of

floor space for a given building based on its total cost and the building’s dimensions. For simplicity,

all buildings will be rectangular, given as the building’s length and width. The cost of a building is

public class MyClass

{

 public static void main(String[] args)

 {

 x = 10;

 }

}

public class MyClass

{

 public static void main(String[] args)

 {

 Int x = 10;

 }

}

Public class MyClass

{

 public static void main(String[] args)

 {

 int x = 10.1;

 }

}

Syntax error!

Variable x is used without being

declared. The compiler will give an

error message pointing to this line.

Syntax error!

The type, int, is misspelled as it should not

be capitalized.

Syntax error!

The type, int, does not match the literal value

you are attempting to store there. 10.1 is a

real number and must be stored under a

floating point type: float or double

Public class MyClass

{

 public static void main(String[] args)

 {

 int x = 1; y = 2;

 }

}

Syntax error!

Although you are able to declare multiple

variables and assign them on the same line of

code, the semicolon after x = 1 ends this line, so

y = 2; is literally a separate instruction and it y

will not have been declared as an int..

Public class MyClass

{

 public static void main(String[] args)

 {

 int x = 1, y = 2;

 double z;

 z = x / y;

 }

}

Logic error!

We should either cast x or y as a double in the

assignment statement to ensure that z is storing

the actual result of the division. As is, z will store

0 but z should store 0.5. We can fix this by doing

either

z = (double) x/ y;

or

z = x / (double) y;

CSC 260L Programming Lab 2

given as width * length * cost per square foot * floors + base cost of the building. For instance, a

building that is 3 floors and is 200x300 feet with a cost per square foot of $11 and a base cost of

$250,000 has a total cost of 200 * 300 * 11 * 3 + 250,000 = $2,230,000. For our program, we will

know the dimensions of the building, the number of floors, the base cost and the overall cost. We

will use these to compute the cost per square foot. Our formula is given below (you should be able

to figure out the formula yourself with a little algebra):
 Cost per square foot = (cost – base cost) /

(width * length * number of floors)

Note that all input will be given as int values but cost per square foot should be a double. You will

have to perform a cast.

Start your program with an identifying comment header similar to the one in Lab 1. Next, declare

the following six variables.

You will not input the length, width, nStories, baseCost or totalCost from the user. Instead, we will

hard-code these values in the program using assignment statements, for instance length = 300;

Initially, use the following values to test your program.

length of foundation 300

width of foundation 200

number of floors 3

base cost $250,000

total cost $2,000,000

Next, include your assignment statement to compute the squareFootCost. Remember to provide any

proper casts needed so that you obtain an accurate squareFootCost value. Finally, finish the program

by outputting the results. Use the following two statements.

Notice spaces after words like “a” and “by”. This will ensure that the values stored in variables will

be output with spaces around them to make the output easier to read.

Compile and run your program. If everything works correctly, you should see the following text in

the console window.

int length, width, nStories;

int baseCost, totalCost;

double squareFootCost;

System.out.println("The cost per square foot of floor space for a "

 + length + " by " + width + " building");

System.out.println("of " + nStories + " stories with a base cost of "

+ baseCost + " and a total cost of " + totalCost

+ " is " + squareFootCost + ".");

The cost per square foot of floor space for a 200 by 300 building
of 3 stories with a base cost of 250000 and a total cost of 2000000 is 9.722222222222221.

CSC 260L: Java Programming Lab 2

The output of the cost per square foot looks ugly, nothing like a dollar amount. Java contains many

built-in classes that can do all sorts of things for us such as handle keyboard or file input, generate

random numbers, create GUI components and also format floating precision numbers. We will use a

class to do this last thing in order to handle our output. The class is called DecimalFormat. To class

this class, we have to do several things.

1. Import the class using an import statement. All import statements occur before the

class header. Add the following after your initial comments but before your class header.

We can also import all of java.text by specifying java.text.* instead, but it is more

efficient to just import DecimalFormat itself.

2. We must declare a variable of type DecimalFormat and then create an instance of it. To

create an instance, we use the word new. We can declare the variable and create the

instance in one or two instructions. The first way is to do:
DecimalFormat df;

df = new DecimalFormat(…);

Combining these, we get
 DecimalFormat df = new DecimalFormat(…);

Note that the … in parentheses is supposed to be a String describing the format we want

to use. Our format should specify that this is a dollar amount, so it starts with $, and then

we want to specify the number of digits we expect on the left and right side of the decimal

point. To say “output a 0” we use 0, and to say “output a digit unless it is 0”, we use #.

The reason for this difference is that the number 1234.5678 would output as

0001234.5678 if we insist on 7 digits before the decimal point but if we use #, any leading

zeroes are omitted. On the other side of the decimal point, we can force trailing zeroes

to appear if desired by using 0 in our format. If our number is 1234.5, we can force this

to appear as 1234.50. Our format will be “$#,###.00”. This means that if the number

has 4 digits on the left of the decimal point, we automatically get a comma. If the number

has fewer than 4 digits, there are no leading zeroes and no comma. Add the proper

instruction to your program. This can appear anywhere in your main method before your

last System.out.println statement but it is best to put it with your other variable

declarations, either before int length or after double squareFootCost.

3. We modify the output of squareFootCost to use this formatting. We do so by replacing

squareFootCost in the println statement with df.format(squareFootCost).

Save, compile and run your program. Does the output look nicer?

4. We will also add the date to your output. Fortunately, there is another Java class called

Date that we can use. It is located in java.util. Add the proper import statement to import

Date.

import java.text.DecimalFormat;

CSC 260L Programming Lab 2

5. We need to declare a variable of type Date and create an instance of it. This will be similar

to what you did for DecimalFormat and df above except that there will be nothing in

parentheses, that is, the right side of the assignment statement will be = new Date();

6. Add an output statement before the other two statements to output: “Date of estimate: ”

followed by the date and two blank lines. Recall you can output a blank line using \n.

Save, compile and run your program to make sure it works.

7. Finally, add a String variable for the client’s name. Assign it the value of “Frank Zappa”.

Add to your output the date with the client’s name. It might look like the following:
Date of estimate is Wed Jan 06 10:01:17 EST 2016 for Frank Zappa

Part 4: Test Your Program

Test your program by changing the values to the new ones given below; recompile and run your

program after each change to see if you get the same output as shown.

Input Output

Foundation
Dimensions

Number of
Floors

Base Cost Total Cost
Cost Per Square Foot
of Floor Space

510 x 722 9 $950,000 $169,583,110 $50.89

251 x 161 1 $100,000 $281,475 $4.49

If you do not have this output, reconsider the logic you used in your computations. Fix the logic

problems and run your program again. Continue the debugging process until all of your results are

correct.

Part 5: Another Enhancement

As a last step in this assignment, we want to compute the average of two cost per square foot values

for two buildings. We will need to store two squareFootCost values, so rename squareFootCost to be

squareFootCost1 and declare a second variable called squareFootCost2. Also add another

double variable called average.

Make sure you change your assignment statement and the output statement for squareFootCost to use

squareFootCost1. After your output statements, assign your variables (length, width, nStories,

baseCost, totalCost) new values. In this case, the first computation will be for the first building above

and the second will be for the second building. Copy and paste your assignment statement and output

statements at the bottom of your program, substituting squareFootCost with squareFootCost2. Now,

add two more instructions, another assignment statement and an output statement. The assignment

statement will compute the average of the two squareFootCost variables. The output statement should

output two blank lines (using \ns) and then output the computed average, using df.format to output it

using a proper dollars and cents formatting.

Part 6: Submitting Your Assignment

After running the program, copy the output and paste it as a comment at the bottom of your source

code. Print out and hand in or email your source code to your instructor.

