
CSC 260L: Java Programming Lab 1

 1

Programming Exercise 1:
A First Program

Purpose: Introduction to Java programming, using the

Eclipse Integrated Development Environment

Background readings from textbook: 1.7-1.10, 1.12, 2.2, 2.4-2.5

Due date for section 001: Monday, January 18 by 10 am

Due date for section 002: Wednesday, January 20 by 10 am

Overview:

In this assignment, you will familiarize yourself with the basic steps of creating a Java program using

the Eclipse IDE. You will enter, compile, debug (if necessary), and run a simple program. You will

then modify the program several times, compiling, debugging and running it as you modify it. For

this assignment, you will need to understand the basic structure of a 1-method Java program, variable

declarations and output statements using System.out. First, we look at using Eclipse. If you are using

your home computer, you can download a free copy of Eclipse from the Eclipse website at

http://www.eclipse.org/downloads/.

Part 1: Starting a Java Program in Eclipse

Start Eclipse. You will see a selection box called the “Workspace Launcher” (Figure 1) which will

allow you to set the directory for your workspace files. You can set this location as the default so that

this window does not appear in the future, otherwise it will appear every time you start Eclipse. Use

the Browse… button to select an appropriate location. If you are using your home computer, set up

a workspace directory that you will remember. If you are using a campus computer, use a flash drive.

You should use the same workspace for all of your programs this semester both for convenience and

to easily access them later in the semester if you need to see how you accomplished something.

Figure 1 Select your workspace

After setting up your workspace, you will see a generic Eclipse Welcome window the first time you

use Eclipse. The actual window may vary depending on which version you installed, but it will look

something like what is shown in Figure 2. If you have already used Eclipse since installing it, this

step is skipped and you will see a project interface window (see figure 3). Close the Welcome window

http://www.eclipse.org/downloads/

CSC 260L: Java Programming Lab 1

 2

by clicking the X in the Welcome tab. You can return to this Welcome window by selecting

Welcome from the Help menu.

Figure 2: Eclipse welcome page.

Figure 3: Eclipse Project Interface Window

Before creating Java programs in Eclipse, you need to first create a project to hold the files that are

associated with that program. For most of this semester, we will only create a single file, but it still

must be placed inside a project. To do this, we create the project first.

From the Eclipse Project Interface Window, create a new project by selecting New… from the File…

menu and then Java Project from the submenu. This brings up a New Java Project pop-up

window, as shown in figure 4. From here, you will see the default location (workspace). You can

change this by de-selecting the Use default location checkbox but since we just set this up,

we will keep it as is. Type in your project name. The name can be anything but it should be

meaningful. Use HelloWorld for this assignment (spell it exactly as shown here). Under JRE

(Java Run-time Environment), you should not have to adjust anything but if you need to, you would

select the appropriate button (e.g., Use default JRE) and adjust the drop down box or click

Configure JREs… under Project layout, leave it as it defaults. There are no working sets to

add so you would leave that blank. Finally, click on Finish.

CSC 260L: Java Programming Lab 1

 3

Figure 4: New Java Project Window

Now let’s explore the entire Eclipse Project Interface window. You should see in the leftmost pane

the Package Explorer. There is one package, named HelloWorld. If you click on the triangle to

expand this, you will see two items, src and JRE System Library. The src item is where your Java

source code is placed. The JRE System Library lists all of the jar files that are available. Figure 5

shows this list expanded. The upper right pane is where you will edit your source code. The lower

right pane is where output (and any error messages) will appear.

Figure 5: Java Project Interface Panes for HelloWord Project

At this point, we will begin to write our first program.

Enter the file name. For this assignment it

should be HelloWorld.

Enter the location where you want the file

saved. Either save to your NKU account or to a

flash drive.

Edit pane

Output pane

Project pane

CSC 260L: Java Programming Lab 1

 4

Part 2: Writing, Compiling and Running a Program

We have a project but now we need at least one file. Through most of this class, our programs will

consist of a single file which itself will store code which includes a main method. The main method

is the first set of code run whenever you run any Java program. For several weeks, we will only use

main methods. Later in the semester we will write additional methods.

To create our file, select New… from the File menu and Class in the submenu. This brings up a

New Java Class pop-up window, as shown in figure 6. In this window, you see the folder which

stores this file, and any package that we want to place this file in (we won’t be doing that in this class).

Beneath this, we find several selections. First, we have to enter a name for this class. Use

HelloWorld. Do we want to make this class public, package, private or protected? We want to

use public. We can also make the class abstract, final or static. We will not use any of these. We

can enter this class’ parent class (superclass) if we want to use inheritance. We will cover this at the

end of the semester. Without specifying a parent, the class automatically uses the Object class as the

parent; we don’t need to change that setting. We can also select a method stub to create. In our case,

we want public static void main(String[] args). We can click this checkbox or

we can write it ourselves. In this case, we will use this automated feature, so select the checkbox for

main. Finally, click on Finish.

Figure 6: Creating a Class

Creating the class causes Eclipse to automatically generate some of the code for us. This appears in

the Edit pane in a window labeled with the name of our file that we just created, HelloWorld.java

CSC 260L: Java Programming Lab 1

 5

(this is the file containing our class, the class is named HelloWorld). See figure 7 which shows the

edit pane.

Figure 7: Automatically Generated Code for New Class

Where you see // TODO Auto-generated method stub, you will add your own code. The

notation // means that what follows is a comment. Comments are ignored by the compiler and are

there for us humans to read. Delete that comment. Enter what you see below exactly as shown except

that you need to fill in what appears in italics (such as your name, the section number and the date).

The items that appear between /* and */ notation are also comments. The rest is the code. Notice

that you do not have to type public class HelloWorld, {, public static void

main(String[] args), } or } yourself, that is already there. Fill in the rest.

Notes:

 The class name must match the file name (excluding the .java part) otherwise you will receive

an error.

 The last instruction has a zero in parens.

 Spell all the words exactly as shown, and use the same capitalization. Java, is a case sensitive

programming language.

 Use the same punctuation including the parentheses, quote marks, semicolons, and brackets

exactly as shown.

 Spacing does not have to be as shown above, but Eclipse automatically indents for you, so

you should stick as closely to the above as possible.

/*

 Author: your name

 Course: CSC260L lab section

 Date: today's date

 Assignment: #1

 Instructor: your instructor’s name

*/

public class HelloWorld

{

 public static void main(String[] args)

 {

 System.out.println("Hello World!");

 System.out.println("Welcome to the fun world of Java programming.");

 System.exit(0);

 }

}

CSC 260L: Java Programming Lab 1

 6

What does this program do? Not much. The executable code appears between the inner { } and

consists of two System.out.println statements and a System.exit(0) statement. The println statements

output anything found inside of the () while the exit statement causes the program to terminate. This

program, like many that we will write early in this semester, has a single class (HelloWorld) with a

single method (main).

Save your program (select Save from the File menu or select the Save button on the button

bar, it looks like a floppy disk, it should be the third from the left. Before you can run your program,

it must be compiled. We can compile it and then run it, or it will automatically compile when you try

to run it. So we will just run it. You can run it by selecting the Run button (it’s a white triangle

pointing to the right in a green button), or by selectin Run from the Run menu, or by right

clicking on HelloWorld.java in the Package Explorer pane and selecting Run As

and from there Java Application. If you had not saved your file, you will be asked if you want

to do so now. Eclipse will first attempt to compile your code. Assuming there are no errors, the

compiled program will then run. If there are errors, you will receive syntax error messages. We

explore syntax error messages and how to find and fix them in the next section. For now, if you have

any errors you should see the lines that contain erroneous instructions selected with a red circle and

an x off to the left of the instructions in the edit pane. Fix any errors you can by referencing the

program above and save and compile it again. Once all errors are fixed, run it.

NOTE: if you prefer to compile the program first before it runs, from the Project menu select

Build Automatically (which is checked) to shut that feature off. Now, you can build (compile)

when you want by selecting Build Project from the Build menu. Don’t forget to save your

file first after making changes and before compiling. If you leave Build Automatically on,

then you don’t have to worry about compiling as your program will be compiled automatically every

time you try to run it.

Part 3. Debugging

There are three sources of errors for any program. The first is known as a syntax error. This error

arises because there is something syntactically invalid with your program code. There are many

reasons for having syntax errors such as misspelling words, forgetting to declare variables, having

incorrect punctuation marks, or a common error in Java is not naming the file the same as the class.

The second source of error is called a run-time error. This error arises after successfully compiling

the program but while it is executing something went wrong. For instance, if the program expects

the user to input a number and the user types in a name instead, this results in a run-time error.

Because we do not know what the user will enter when we compile the program, this error is not

caught until running the program, thus it is a run-time error. Another source of run-time errors is

asking the computer to do something it cannot such as divide by 0. The final source of error is the

hardest to catch and fix, a logical error. Here, your logic is incorrect. With very complex programs

(consisting of hundreds of thousands or millions of instructions), finding logical errors is one of the

biggest challenges that programmers will ever encounter. A logical error might be as simple as adding

when you meant to subtract but it can also be an infinite loop so that your program never terminates.

Here, we will explore syntax errors only but you will come across run-time and logical errors

throughout the semester and quite likely your entire career.

CSC 260L: Java Programming Lab 1

 7

Return to your Edit Pane and change the first word from public to Public as shown below.
Public class HelloWorld

Compile your program (try to run it). You will receive an error and your environment will look

something like that of figure 8. Notice in the figure three things. First, next to HelloWorld.java is an

X indicating an error arose. The error is in line 9. We see an X next to 9 and we see the word Public

underlined in red. Finally, in the Output pane we see a message indicating an Unresolved compilation

problem in HelloWorld.main(HelloWorld.java:11). The “Unresolved compilation problem” is the

syntax error message. In this case, the error message is not helpful. Some messages are very helpful

others are not. We are told that the error exists in the main method of HelloWorld at (or near) line

11. In fact the error is in line 9 (at least in this figure). The error is that we misspelled the word

public as Public. Change it back and in a few moments you will see the red underline disappear and

the X disappear. You can then run the program and upon compilation, you will see the X next to

HelloWorld.java disappear and the error message in the Output pane be replaced with the program’s

output.

Figure 8: A Syntax Error

Let’s explore some additional sources of errors. In the same line (public class HelloWorld), change

the name of the class from HelloWorld to Hello. Try to run (or compile) your program. What

error message did you get? It is asking for the class HelloWorld because that is the name of the file.

The class it found was not named what was expected. This is an error fairly unique to Java but a

common error. Correct the name. Now, remove the ; at the end of the first println statement. Compile

your program. In this case, you are told that you need to insert a ; in the line where the error arose.

Although it does not tell you where to insert the ; as a Java programmer you should know to end each

instruction with one. Fix this error. Now remove the last } at the bottom of your program. Again,

the error message tells you how to fix it, insert a } to complete the ClassBody which means the class

code. For another syntax error, remove the close quote mark from the first println statement (the

CSC 260L: Java Programming Lab 1

 8

quote after world!). Again, compile/run your program. What error message do you get? The

message given is less instructive than the last couple but you should still be able to make some sense

out of it. Replace the quote mark before continuing. We will try one more syntax error. Remove the

word void (between static and main). Again, compile/run your program. The error message this time

may make no sense at all but it outputs the line that it expected to see. What is missing is the word

void. Replace it.

Let’s explore a minor logical error. Your program contains two System.out.println

statements. Change the first statement to System.out.print (remove the ln from println).

Compile and run your program. No syntax error. Why is there a logical error? If you look at the

output, you will see that the two output lines are now on one line. That in itself is not an error, but

there is no space between them. You can fix this error by adding some blank spaces inside the quote

marks either after the ! in World! or before Welcome. For instance, our first statement could become:
 System.out.print(“Hello World! ”);

What is the difference between print and println? With println, after the output a new line character

is placed so that the next output statement will output on a new line. The print statement does not

output the new line character so the next output statement will appear on the same line. By using a

print instead of a println, while the output of the program is not incorrect, it does not look nice.

Change print back to println before you continue.

Part 4: Program Enhancements

We will enhance your program now to make it slightly more interesting. We will do this by adding

variables and assignment statements. A variable represents the name of a place in memory to store

information. In Java, every variable must be typed. To provide a type, you declare the variable before

you use it (this differs from some other languages like Python). A declaration is simply the type

followed by the variable you are declaring. For instance, an int variable (an integer) is declared as

int name; where name is the name you are giving to the variable. Types in Java include int

(integer numbers), float (floating point or real numbers), double (floating point numbers with more

precision), char (single characters like a letter, a digit or a punctuation mark), String (note the

capitalization, to store a group of 0 or more characters) and boolean (to store either true or false).

There are other types but for now, we will be dealing with these.

You can declare more than one variable at a time if they are the same type by separating each name

by a comma as in int x, y, z; and String firstName, lastName; Notice the spelling

we used for the two Strings. This is called camel notation. We can either start each new word with

a capital letter or insert an underscore (_) between names like income_tax or income_Tax. We

typically use camel notation instead.

Once we have a variable declared, we can use it. We can assign it a value through an assignment

statement, or input a value into it. If it has a value, we can use it to assign another variable or to

output it, among other things. For now, we will use very simple assignment statements of the form

variable = value; The value must match the proper type. For instance, from above, we could

do x = 1; y = 5; and z = 10000; but we could not do x = 1.123; or y = “Frank”;

Note that spaces are not needed in our assignment statements. We could just as easily do x=1;

instead of x = 1;

CSC 260L: Java Programming Lab 1

 9

To output a value, use a System.out.print or System.out.println statement. Our previous two

print/println statements output only literally characters (items placed in quote marks). If we want to

output a variable, we do not use the quote marks, as in System.out.println(firstName);

or System.out.print(x); What if we want to print multiple things such as Hello and

firstName? For such an output, we must concatenate the items together. In Java, Strings are

concatenated together by using the + before each String item. For instance, we can have our output

appears as the word Hello followed by the contents of the variable firstName as “Hello ” +

firstName, giving us the instruction System.out.println(“Hello ” + firstName);

Notice the blank space after the ‘o’ in Hello before the close quote mark. Why is it there? You will

explore this below.

Add to your program two variable declarations, the String name and the int age. Assign them

both your values (for name, use your first name and for age, use your age such as age=18;) Place

each variable declaration prior to the assignment statement that gives that variable its value. Now,

modify your first System.out.println statement so that it outputs Hello and your name. Add another

System.out.println statement after this and before the Welcome message that says “You are ___ years

old” where ____ is your age. Note: this statement will require two + signs, one before age and one

after age. See if you can figure out how to do this. If you can’t, ask your instructor for help.

Compile and run your program. Once successful, move on to the last part.

Part 5: Additional Enhancements

With a print statement, as we explored above, no new line character is output. You can output a new

line character “by hand” by outputting the character \n. For instance,

System.out.print(“Hello ” + name + “\n”); is the same as

System.out.println(“Hello ”+name); because the first statement, while being a print,

also outputs \n to end the line, causing a new line to appear. Modify your program by including

another String variable called message. Create whatever message you like. Make sure your message

is no longer than 80 total character. Replace the Welcome to the… output statement with the

word Done. Now, add a System.out.println statement that outputs literally The message of

the day is followed by the value stored in your variable message. In this println statement, add

two \n’s before “The” and add two \n’s after message is output. The result will be two blank lines

before and after the message. Your output might look like this:

 Hello Richard

 You are 51 years old

 The message of the day is Information is not knowledge, knowledge is not wisdom!

 Done

Once done modifying your program, compile and run it. If it does not compile, fix any errors you

find. If it does run but the output does not look right, fix it and try again. When done, run your

program and copy the output from the Output pane.

CSC 260L: Java Programming Lab 1

 10

At the very bottom of your program in the Edit pane, after your last } press the enter key add /*,

press the enter key and paste your output there, and then add one more */. This will

put your output in a comment at the bottom of the program.

To submit your program, do one of the following:

 Print your source code including your output as inserted in comments (Print from the

File menu) and hand the printout in to your instructor *or*

 Email your source code file to your instructor (foxr@nku.edu). You will have to locate the

source file to attach it to the email. It will be beneath the directory you specified as your

working directory, under the subdirectory of the name of the project (HelloWorld) in a

subdirectory called src. In this case, the program is called HelloWorld.java.

Part 6: Common Pitfalls

In each lab, we will see some common sources of syntax, logical or run-time errors to help you better

learn what not to do. Here are some pitfalls for this lab.

1. The class name does not match the file name (HelloWorld and HelloWorld.java in our case).

2.

3.

4.

public class HelloWorld;

{

 ...

}

Syntax error!

Do not place semicolons at the end of

class or method declarations. This

may give more than one error about

“illegal start of expression” or

“unclosed literal.”

public static void main(String[] args)

{

 System.out.println("Hello World!");

 System.exit(0);

Syntax error!

All opening quote marks, opening

parentheses, and opening braces must

have a closing partner. In this case,

there is no } at the end

public static void main(String[] args)

{

 name = ‘‘Frank’’;

 System.out.println("Hello " + name);

 System.exit(0);

}

Syntax error!

The variable name is not declared. It

should be declared as a String prior

to the assignment statement.

