
CSC 260.002 Programming Assignment #9

Due date: Tuesday, November 29

In this assignment, you will implement a class called ChessPiece to represent a chess piece on a

chess board. This will be a simple class (see the UML below) with four instance data, a

constructor, accessors for all four instance data, mutators for row and column, and a toString which

should return a String containing the ChessPiece’s color and type, row and column value all on

one line, as in White Rook 0 0. You may implement a 0-arg constructor if you wish but this

is not necessary.

 ChessPiece:
 type, color: String

 row, column: int

 +ChessPiece(type: String, color: String, row: int,

column: int)

 + getType(): String
 + getColor(): String

 + getRow(): int

 + getColumn(): int

 + setRow(int row): void

 + setColumn(int column): void

 + toString(): String

The setRow and setColumn mutators must ensure that the passed parameter is legal (between 0

and 7). If the passed parameter is incorrect, do not change the row/column.

Once the ChessPiece class is implemented, create a ChessGame class which will contain a main

method as well as an inputFromDisk method, an inputMove method, a move method, an output

chessboard method and a saveToDisk method. These are described later. The ChessGame will

implement a chess board as an 8x8 array of ChessPiece objects. Each element of the chess board

will either be a ChessPiece or null (to indicate an empty square).

The ChessGame program will operate as follows.

 Declare the chessboard and initialize all 64 elements to null

 Create a Scanner for user input

 Pass the chessboard to the inputFromDisk method (described later)

 Call the input method to get the starting row from the user

 While (row>=1) { // if 0, exit the loop and end the game

 Call the input method to get the starting column from the user

Call the input method to get the ending row from the user

 Call the input method to get the ending column from the user

 Move the ChessPiece from the starting row/col to ending row/col

 Call the output chessboard method

 Call the input method to get the starting row from the user

 }

 Call the saveToDisk method by passing the chessboard

For the inputFromDisk method, hardcode the name of the file you are inputting from

(chessboard.txt, which is on the website) and input each line of input as two String values and two

int values (e.g., “White”, “Rook”, 0, 0). Create a ChessPiece whose name, color, row and column

are these four inputs, and assign chessboard[row][col] to equal the new piece. Close the file and

return the chessboard object (the 2-D array). You should look at the chessboard.txt file to get an

idea of how the input looks.

For the input method, pass it two Strings, “starting” or “ending” and “row” or “column”. Input

the int value from the user and data verify that the value is between 1 and 8 or, if it is starting row,

that it is between 0 and 8 (as 0 for starting row ends the loop). Return the int value to main as in
 startCol = getInput(in, “starting”, “column”);

where in is our keyboard Scanner.

The move method will receive the startRow, startCol, endRow and endCol. Subtract 1 from each

of these so that they are in the range of 0-7. Now, test to see if there is a ChessPiece at startRow,

startCol and if there is not a ChessPiece at endRow, endCol. If these are true, move the piece (we

are not implementing capturing pieces so the destination location must be empty, and we will not

be testing to see if the move is a legal chess move given the piece’s type). If either the starting

location is empty or the ending location is occupied, do not move the piece and instead output an

error message. The move method will look something like the following.
if(board[startRow][startCol]!= null&&

 board[endRow][endCol]==null) {

 board[endRow][endCol] = board[startRow][startCol];

board[endRow][endCol].setRow(endRow);

board[endRow][endCol].setCol(endCol);

board[startRow][startCol] = null;

 }

 else … indicate an illegal move (no piece at the given location)

The saveToDisk method will open the same file as your inputFromDisk method (chessboard.txt)

so you will be replacing the old board set up with the new one. You will only call this method

after the while loop in main indicating that the user has input 0 for the startRow. Iterate through

the board, row-by-row, and if a ChessPiece is present at the current [i][j] location, output its color,

type, row and column to the disk file. You can accomplish this by writing each value individually

through the proper access method, or by using the toString method. Do not output any

chessboard[i][j] if that location currently stores null. When done, close the output file. Remember

both the inputFromDisk and saveToDisk (as well as main) must include throws IOException

in their header. The inputFromDisk method uses a Scanner and the saveToDisk uses a PrintWriter.

The output chessboard method receives the chessboard and iterates through each row, outputting

either the initials of the piece (first letter of color, first letter of type) or -- if the location in the

array stores null (indicating an empty square). NOTE: In the input file, I am using “Horse”

instead of “Knight” so that we can differentiate in the output the type of piece (using a ‘K’ for

Knight would confuse the piece with a King). You do not need to worry about this, just continue

to use “Horse” for the type instead of “Knight”.

Below is an excerpt of running the program for two moves before exiting.

 WR WH WB WQ WK WB -- WR

 WP -- WP -- -- WP WP WP

 -- WP -- WP -- -- -- WH

 -- -- -- -- WP -- -- --

 -- -- BP -- BP BB -- --

 -- -- -- BP -- -- -- --

 BP BP -- -- -- BP BP BP

 BR BH -- BQ BK BH BB BR

Starting row 2

Starting col 1

Ending row 4

Ending col 1

 WR WH WB WQ WK WB -- WR

 -- -- WP -- -- WP WP WP

 -- WP -- WP -- -- -- WH

 WP -- -- -- WP -- -- --

 -- -- BP -- BP BB -- --

 -- -- -- BP -- -- -- --

 BP BP -- -- -- BP BP BP

 BR BH -- BQ BK BH BB BR

Starting row 8

Starting col 4

Ending row 5

Ending col 1

 WR WH WB WQ WK WB -- WR

 -- -- WP -- -- WP WP WP

 -- WP -- WP -- -- -- WH

 WP -- -- -- WP -- -- --

 BQ -- BP -- BP BB -- --

 -- -- -- BP -- -- -- --

 BP BP -- -- -- BP BP BP

 BR BH -- -- BK BH BB BR

Starting row 0

Run your program on a few (at least 5) legal moves of your choice and then exit. This will change

the stored file. Submit your source code for both classes, the output of the last board configuration

(for instance, the last output shown above) and the stored file. Copy the output and the stored file

into the source code of your ChessGame program for convenience and hand in both classes. Or,

hand in both classes, and a printout of both the last output and the stored file.

