
CSC 260.002 Programming Assignment #8

Due date: Tuesday, November 15

In this assignment, you will write a Horse class and a HorseRace class. The former class will not

have a main method so that you will have to create objects of type Horse in your HorseRace class.

The Horse class represent a race horse and will have instance data to represent the Horse’s name,

how quickly it can start a race, its stamina during the race, how sturdy it is, and how quickly it

runs the race, as well as a Random number generator, and values for where it is in the race and if

the Horse is getting nervous because of other Horses around it. Use the following UML notation

to construct your Horse class with the instance data and methods listed.

 Horse: default values
 name: String “unknown”

 start: int 5

 stamina: int -2

 sturdiness: int 15

 minSpeed: int 8

 maxSpeed: int 10

 nervousness: int 5

 location: int 0

 g: Random null

 +Horse()

 +Horse(g: Random)

 +Horse(g: Random, name: String)

 +Horse(g: Random, name: String, minSpeed: int,

maxSpeed: int)

 +Horse(g: Random, name: String, start: int,

stamina: int, sturdiness: int, minSpeed: int,

maxSpeed: int, nervousness: int)

 +getName(): String

 +getLocation(): int

 +move(phase: int): void

 -getsNervous(horse1: Horse, horse2: Horse): void

 +toString(): String

The default values are for the constructors that do not receive those particular pieces of

information. For instance, for the first three constructors, assign start to 5 and stamina to -2, and

for the 0-arg and 1-arg constructors, use all of the default values. For all constructors, set location

to 0 and nervousness to 5. The 0-arg constructor is the only one that does not receive a Random

object and so should set its variable to null. Normally this variable should get a better name like

generator but in this program, you can just use g.

The move method changes the Horse’s location based on the int values (start, stamina, etc), and

the phase of the race which is a parameter. If phase is 1-4, the Horse moves randomly between

start-1 and start+1. For instance, if start is 7, it will move between 6 and 8. In phases 5-

15, the Horse moves between minSpeed and maxSpeed. For instance, if minSpeed is 10 and

maxSpeed is 15, the Horse would move a random amount between 10 and 15. You will have to

work out the proper assignment statement to compute this given the variables minSpeed and

maxSpeed. From phase 16 onward, the Horse moves between minSpeed and maxSpeed except

that there is a 50% chance that the movement will be reduced by the stamina amount. This is the

impact of the Horse slowing down because of a lack of stamina. Use the same Random object (g)

to generate the 50% random chance (this can simply be a random number of 0 or 1). For every

move, no matter what phase it is, generate a random number from 1-20 and if that value >

sturdiness, the Horse only moves between 1-4 as the Horse “stumbles” during that turn. Finally,

if the Horse does not stumble but the Horse’s nervousness reaches 0, then it has become nervous

because of the other nearby Horses (see the next method for how this is determined). In this case,

subtract 3 from the amount it is moving and reset nervousness to 5. The move method should not

only change the value of location based on the amount moved but also output the Horse’s name,

how much it moved, where it has moved to, and if it stumbled or is nervous. See the sample output

at the end of the assignment.

The getsNervous method compares this Horse’s location to the other two Horses’ locations once

the race has started (if location <= 5, this method does nothing). To compare this Horse’s location

to the other Horses’ locations, you need to pass to this method the other two Horses as parameters.

If those parameters are h1 and h2, then you compare location against h1.getLocation()

and h2.getLocation(). Below is the logic for determining nervousness and its impact.

 If this Horse is at the same location or within 1 of both Horse h1 and Horse h2, subtract 4

from this Horse’s nervousness value (values can become negative)

 If this Horse is within 3 of Horse h1, subtract 1 from its nervousness

 If this Horse is within 3 of Horse h2, subtract 1 from its nervousness

To determine “within 1” or “within 3”, use Math.abs as in

 Math.abs(location – h1.getLocation())<=…

The toString will return a String of the Horse’s name and current location. Implement accessors

as listed in the UML notation above. You do not need accessors for all instance data. The only

mutator is move. Also notice that since getsNervous is only called from within the move method,

getsNervous should be a private method, not public. All other methods should be public.

Implement the HorseRace class. This class has only a main method. It will create three Horse

objects (shown below), all of which will share the same Random object (only create one Random

variable in this class and pass it to all 3 Horse constructors). Since Random is used in both Horse

and HorseRace, you need to import it into both files. This class will also need an int variable called

phase, initialized to 0 (phase is the “turn” or the number of iterations to this point in the race).

After creating all three Horses, main uses a while loop that iterates while none of the three Horses

has reached the finished line (250). You might implement it using code like the following:
while(h1.getLocation()<250&&h2.getLocation()<250&&

h3.getLocation()<250)

In the while loop, increment phase and call each Horse’s move method as in h1.move(phase);

(remember that move outputs info about the Horse’s move, so there is no other output required in

this loop). After exiting the while loop, output the results of the race (the location of each Horse

and who won). Assume there will be no tie to simplify the logic of determining who wins (there

may be a tie, but if so, just award one of the Horse’s as the winner). If desired, you can add a

Scanner to your code to input from the user after each turn so that the output pauses. This is not

necessary, simply an option if you want to watch the game run turn-by-turn. Your Horses should

be set up as follows:

 name start stamina sturdiness minSpeed maxSpeed

 Speedy 7 -6 14 11 14

 Steady 5 -1 17 9 11

 Sturdy 4 -4 19 8 12

Here is a sample output from running the HorseRace program.
speedy moves to 6

steady moves to 6

sturdy moves to 3

speedy moves to 14

steady moves to 11

sturdy moves to 8

speedy moves to 20

steady moves to 15

sturdy moves to 11

speedy moves to 21 while stumbling

steady moves to 19

sturdy moves to 14

speedy moves to 29

steady moves to 21 while stumbling

sturdy moves to 19

speedy moves to 42

steady is nervous and falters, steady moves to 27

sturdy moves to 29

speedy moves to 54

steady moves to 31 while stumbling

sturdy moves to 40

…

speedy moves to 220

steady moves to 199 while stumbling

sturdy moves to 237

speedy moves to 232

steady moves to 201 while stumbling

sturdy moves to 246

speedy moves to 242

steady moves to 211

sturdy moves to 256

The race results are:

 speedy is at 242

 steady is at 211

 sturdy is at 256

sturdy wins!

Submit your two source code files (Horse and HorseRace) and one output from running HorseRace

that includes some stumbles and nervousness and the race results at the end.

