System Administration
Course Notes #6
awk
The awk program is similar to sed in that you specify patterns to match in a text file and what you want to have happen to the lines of a file that match those patterns. The awk program (named after its authors, Aho, Kernighan and Weinberger) goes beyond what sed can do though in that awk allows you to
1. specify particular fields of a matching line to manipulate and/or output
2. use variables to store values temporarily
3. perform calculations on those variables.
Another difference between sed and awk is that awk expects your text field to have rows that are separated into fields, so we would not typically use awk on a text document that just contains sentences (like an email message, or one of your answer files), but instead on a file like courses.dat, where the items in each row represent some category (like a database relation). If you want to experiment with the files, copy ~foxr/addresses.txt, ~foxr/payroll.dat, ~foxr/payroll2.dat to your home directory.
Simple awk commands
A simple awk command will look something like this:

awk ‘/pattern/ { … }’ filename
The pattern is a string of characters to match, a regular expression if desired, and the … consists of one or more statements that specifies what to do with or about the matched line. The typical command will be to print something out using a print statement.
Like sed, awk looks line-by-line for a match and if found, performs the operation in { } marks. The print statement allows you to print values found in the line as well as literal values such as strings. To specify an item in the line, use $n to indicate the field that you want to print where n is an integer like 1 or 2. For instance,
awk ‘/KY/ { print $1,$2 }’ addresses.txt
will print the first and second fields of each line in the file addresses.txt that contains the string KY. The , used in between $1 and $2 says to insert a delimiter, in this case, a space. If we instead delimit with a space between $1 and $2, awk outputs the two fields without a space between them! So you want to use the comma as a way to insert space. Another option is to insert your own space using “ ”as in

awk ‘/KY/ { print $1 “ ” $2 }’ addresses.txt

 We can use either ‘’ or “” to surround the awk statement such as in awk “/KY/ {print $1 $2}” addresses.txt but this would not work if we wanted to insert a space using “ ”, so it is more common to use ‘ ’ to surround the awk statement. That is, we will use ‘’ if the print instruction includes “” because you can’t do
awk “/KY/ {print “KY resident”}” addresses.txt.
What is a field? We use awk on formatted files where items on a line are delimited, commonly by a tab (but they can be delimited by a space instead). The computers.txt file is an example where fields are office building, office number, last name, and computers in their office. We would reference these fields as $1, $2, $3, $4 (although some people had more than 1 computer, so some lines might have a $5). Use $0 to reference the entire line (all fields).
Examples:

awk ‘/ST/ {print $1 $2 $3}’ computers.txt

awk ‘/ 3[0-9]*/ {print $0}’ computers.txt

awk ‘/, W/ {print $1, $2, $3, $4, $5}’ computers.txt

The first one should be easy to understand. The second one finds all lines where there is a number that starts with a 3 (3rd floor) and outputs their entire line. The last one finds any line that has a comma followed by a space followed by a W, that is, last name starts with W. This prints all fields, however if you look at the file, one of the W’s only has 1 computer. What is output for $5 if there is no fifth field? Nothing.
Forms of Comparisons

Patterns specified can be simple text to match, or a regular expressions. If you want to match from the computers.txt file anyone with a Linux or Unix computer, you might use /n[iu]x/ which appears in Linux and Unix. For the addresses.txt file, if you wanted to find anyone who lived in either KY or KS, you could match on /K[SY]/. In addition, ^ and $ can be used in your expression. You cannot use {n} however. To match when the pattern is not found in a line, use ! as in

awk ‘!/A/ {print $1 “ does not have an A”}’ foobar.txt
Use !/^…/ to make sure that a line does not start with the given pattern as in !/^S/ to find any line that does not start with an S. Similarly, ‘!/pattern$/’ finds all lines where the pattern does not end the given line. The following outputs first and last names of people from the addresses.txt file that do not have a 41*** zip code.

awk ‘!/41[0-9][0-9][0-9]$/ {print $1,$2}’ addresses.txt

Notice how we used [0-9][0-9][0-9] instead of [0-9]{3}. We could have also used !/41…$/.
Aside from matching a /pattern/, awk allows for comparisons of field values against values. These comparisons use the relational operators (<, >, = =, !=, <=, >=). As with the print statement, you reference a field’s value using $n where n is the field number. For instance, to print all of the courses that are 3 credit hours from your courses.txt file, you would use

awk ‘$3 == 3 { print $1 }’ courses.txt

Notice that you could not do this simply by using /3/ as the pattern this will match any 3 (including say CIT370 or a course taken in Spring2003). To print the course, semester, and number of hours for all courses more than 1 hour, you would use

awk ‘$3 > 1 {print $1 “\t” $2 “\t” $3 }’ courses.txt

Notice the use of “\t” in the print command to separate the fields with a tab. You could also just use “ ” to separate the fields with a space.

Another aspect of awk that differs from sed is the ability to perform calculations in the action { } portion of the command. For instance, if a file contained payroll information where field 2 represented hours worked and field 3 was the wages, you could compute pay as $2 * $3 and either store this in a variable, or print out the information as in { print “Pay: ” $2*$3 } or { pay = $2 * $3}.

Let’s combine the use of calculations and comparisons in a more elaborate example using the payroll.dat file. This file lists the person’s last name, number of hours worked and hourly wages as three fields on each line. We could use the following to output the pay of anyone who earned overtime.

awk ‘$2 > 40 { print $1 “\t $” 40 * $3 +

($2 – 40) * $3 * 1.5 }’ payroll.dat

This statement compares the hours field ($2) with 40 and if greater, then computes the overtime pay (40 * normal wages, plus the hours over 40 * wages * 1.5). Notice that this will only output the pay for people who have earned overtime. To make this print out everyone’s pay, we could do the following

awk ‘$2 > 40 { print $1 “\t $” 40 * $3 +

($2 – 40) * $3 * 1.5 }
$2 <= 40 {print $1 “\t $” $2 * $3}’
payroll.dat

In the next section, we will improve on the logic above by using an if-then-else statement, similar to other programming languages.
You can combine conditions by using && or ||, similarly to Java. For instance, to find any employee who worked fewer than 35 hours and earns more than $20 per hour, you might use

awk ‘$2 < 35 && $3 > 20 {print $1}’ payroll.dat

You can also combine a condition with a regular expression. Imagine our payroll.dat file also included the state as a fourth field (payroll2.dat). If you wanted to find all employees who worked overtime and lived in KY, you could use

awk ‘/KY/ && $2>40 {print $1}’ payroll2.dat

or
awk ‘$4==“KY” && $2>40 {print $1}’ payroll2.dat
Multiple Patterns

What happens if you want to perform different operations for different patterns? We already saw an example of this when we computed the pay of all individuals in the payroll.dat file by having two different conditions and actions ($2 > 40 and $2 <= 40). Here is the example repeated:
awk ‘$2 > 40 {print $1 “\t $” ($2-40)*$3*1.5+40*$3}

 $2 <= 40 {print $1 “\t $” $2*$3}’ payroll.dat

Imagine instead that anyone who works overtime and lives in KY gets double time instead of time and a half (1.5). For this example, we have three possible conditions (overtime and KY, overtime, normal) and three actions. Our code becomes:

awk ‘/KY/&&$2>40 {print $1 “\t$” 40*$3+($2-40)*$3*2}

 $2>40 { print $1 “\t$” 40*$3+($2–40)*$3*1.5}

$2<=40 {print $1 “\t$” $2*$3}’ payroll2.dat

The generic form of awk is

awk ‘/pattern1/ {pattern1 action}

/pattern2/ {pattern2 action}

/pattern3/ {pattern3 action}

…

/lastpattern/ {lastpattern action}’ filename

Here is a simple but stupid example using your addresses.txt file:

 awk ‘/OH/ {print $1 “, go Buckeyes!”}

 /KY/ {print $1 “, go Wildcats!”}

 /IN/ {print $1 “, go Hoosiers!”}’ addresses.txt

Another way to perform one of two possible operations is to use an if-else statement. This will be described later.

Variables in awk

So far, all of our actions have performed print commands. We can also use variables and assignment statements, just as in a Java program. In awk, we do not have to declare variables or initialize them (unless we want to initialize a variable to a value other than 0). We just start using them as needed. As a simple example, let’s assume that you want to determine the total number of CIT credits that you are earning in Spring 2009 from the courses.dat file. You might use the following awk command:

awk ‘/CIT/ && /Spring2009/ {hours+=$3}’ courses.dat
or
awk ‘/CIT/ && $2==“Spring2009” {hours+=$3}’ courses.dat

NOTE: if you are unfamiliar with the notation +=, this is the same as hours = hours + $3.

Here, for every CIT course in Spring 09, we are adding the number of hours of the given course to the variable hours. Notice that if we wanted to count the number of CIT hours earned in all of 2008, for instance, we would have to use

awk ‘/CIT/ && /2008/ {hours+=$3}’ courses.dat

but could not use the second version where we have $2==“…” because the item in “” is taken literally, not as a regular expression to match. So while we can match /2008/, we could not do $2==“2008” because that would not literally match the second field (the second field is Spring2008 or Summer2008 or Fall2008). We could use:

awk ‘/CIT/ && ($2==“Spring2008 || $2==“Summer2008” || $2==

“Fall2008”) {hours+=$3}’ courses.dat

Although now we are getting pretty complicated with our conditions.

Notice that in all of these examples, we are not outputting the value of hours, so while we are computing the number of hours, we never get to see what is computed! We could change our action to be {hours+=$3; print hours} but this would print the number of hours for every line that matched (so we would get hours to print out several times). For instance, if your file has CIT 370 and CIT 380 during Spring 2009, you would get output of 3 followed by 6 because awk would match both lines, the first time hours starts at 0 and becomes 3 and is printed out, and for the second match, hours becomes 6 and is printed out. Only the final value for hours is relevant. So, we turn to…
Using BEGIN and/or END
As if awk isn’t complex enough, we need to be able to have code that runs no matter what patterns match. We can accomplish this by including a BEGIN and/or an END section. The BEGIN section precedes any patterns and is the word BEGIN followed by one or more instructions that will always execute prior to doing any pattern matching. We might use this section to initialize variables here or output an introductory header line. The END section follows all patterns and is the word END followed by one or more instructions that will always execute after any pattern matching takes place. We can use in our prior example as follows:
awk ‘BEGIN {print “CIT hours earned in Spring 2009: ”; hours=0}

 /CIT/&&/Spring2009/ {hours+=$3}

 END {print hours}’ courses.dat

Consider our example of normal vs overtime pay. Let’s instead compute and output the average pay that was earned by the group of employees. We will also output each person’s individual pay. To compute an average, we need to amass the total pay of all employees and divide it by the number of employees. To amass the total pay, we add each individual’s pay to the total after we compute each individual’s pay. We will add two variables, total_pay, and count. We will also use a third variable, current_pay, to shorten the work that the computer needs to do. We use BEGIN to initialize total_pay and count to 0 (recall that we do not need to initialize variables to 0, but this is good programming form, so we will). We have two patterns, one for normal pay and one for overtime pay. For either match, we compute and store in current_pay that employee’s pay and add that value to total_pay while also outputting the result. We also increment count. When we are done, we use an END statement to compute the average pay and output the result.
awk 'BEGIN {total_pay=0.0;count=0}

$2>40 {current_pay = ($2-40) * $3 * 1.5 + 40 * $3;
total_pay += current_pay; count++;

print $1 "\t $" current_pay}

$2<=40 {current_pay = $2*$3; total_pay += current_pay;

count++; print $1 "\t $" current_pay}

 END {print "Average pay is $" total_pay/count}'
payroll.dat

NOTE: if you are unfamiliar with count++, this means count = count + 1.

For a very different example, consider that you want to find the average file size of a given directory. We will use ls –al and redirect the result to an awk command. The awk command will look somewhat similar to the above example in that we will keep track of a total and count and at the end, output the average. However, here we only need to add a value to total if the line starts with a non-d (recall, ls –al lists all file protections where a file protection looks like –rwx… if the item is a file or drwx… if the item is a directory, or lrwx… if the item is a symbolic link). So, our command will look like this:

ls -al | awk ‘BEGIN {total=0;count=0}
 /^[^d]/ {total+=$5;count++}
 END {print total/count}’

Notice how we did not specify an input file for awk since the input is coming from ls –al. Also notice that our pattern is /^[^d]/ where the first ^ means “match to the start of the line” and the [^d] means “anything that is not a d”.

Advanced awk

awk also provides if and if-else statements. These statements are similar to that of Java.

The if statement is: if(condition) statement;

The if-else statement is: if(condition) statement; else statement;

And there is a nested if-else statement:

if(condition1) statement1; else if(condition2) statement2; else if (condition3) statement 3; … else statementn;
The entire if statement is a single instruction placed inside of { }. We might use the if-else statement if we wanted to perform one of two actions on every line depending on a pattern or value. For instance, we could modify our payroll example as follows. Here, we do not need one pattern for overtime and one pattern for normal pay but instead, we just test one of the two conditions.
awk 'BEGIN {total_pay=0.0;count=0}

{if ($2>40) {current_pay = ($2-40)*$3*1.5+40*$3;
total_pay+=current_pay; count++;
print $1 "\t $" current_pay}

 else {current_pay = $2*$3; total_pay += current_pay;

count++; print $1 "\t $" current_pay}

 }

 END {print "Average pay is $" total_pay/count}'

payroll.dat

Here, in between the BEGIN and END sections is a statement { if … else … }. The statement inside of the { } is executed on every line. There is no pattern to match but instead the if-else statement always executes. The if-else statement has a condition to determine whether to execute the if clause or the else clause.
We can also use the if statement in our END statement to ensure that we do not divide by zero. Imagine that we want to compute the average pay for all employees who worked overtime. If no employees worked overtime, the following awk statement would give us an error:

awk 'BEGIN {total_pay=0.0;count=0}

$2>40 {current_pay = ($2-40)*$3*1.5+40*$3;

total_pay+=current_pay; count++;
print $1 "\t $" current_pay}

END {print "Average overtime pay is $" total_pay/count}' payroll.dat

We would fix this problem by adding an if statement to our END:

awk 'BEGIN {total_pay=0.0;count=0}

$2>40 {current_pay = ($2-40)*$3*1.5+40*$3;

total_pay+=current_pay; count++;
print $1 "\t $" current_pay}

END {if (count > 0) print "Average overtime pay is $" total_pay/count;

else print “No one worked overtime hours”}'

payroll.dat

There are also while-loop and for-loop statements available, both of which look like Java.

while(condition) statement;

where the statement is again placed inside of { } and the entire while loop is also enclosed in { } as in

awk ‘BEGIN {x = 10;i=0}

{while(i<x) {print i;i++}}’
foobar.txt

Notice how this awk command does not use an END statement.

The for loop looks like this: {for (i=0;i<10;i++) print i}

Here, we are printing the first and third fields in a file for any line that starts with an A:

awk ‘/A/ {for(i=1;i<4;i+=2) print $i}’ foobar.txt

This instruction actually prints $1 on one line and $3 on the next, so the output may not look like you expect!

We won’t cover the loops in more detail as they are less frequently needed in awk since awk already is iterating through the lines of a file. We will use loops when we get to shell scripting.

