
Fall 2006 
Chris Christensen 
MAT/CSC 483 
 

The Hill cipher 
 
 
The Playfair cipher is a polygraphic cipher; it enciphers more than one letter 
at a time.  Recall that the Playfair cipher enciphers digraphs – two-letter 
blocks.  An attack by frequency analysis would involve analyzing the 
frequencies of the  digraphs of plaintext.  Complications also 
occur when digraph frequencies are considered because sometimes common 
plaintext digraphs are split between blocks.  For example, when encrypting 
the phrase another type the digraphs are an ot he rt yp e_, and the common 
digraph th is split between blocks. 

26 26 676× =

 
Frequency analysis would be even more complicated if we had a 
cryptosystem that enciphered trigraphs – three-letter blocks.  Frequency 
analysis would involve knowing the frequencies of the 26 26 26 17576× × =  
trigraphs. 
 
Systems that enciphered even larger blocks would make cryptanalysis even 
more difficult.  There are 26 26 26 26 456976× × × =  blocks of length 4, 

 blocks of length 5, 
 blocks of length 6 … .   

26 26 26 26 26 11881376× × × × =
26 26 26 26 26 26 308915776× × × × × =
 
If we had a cryptosystem that encipher blocks of length 100, there would be  
 
3142930641582938830174357788501626427282669988762475256374173
1753989959842010402346543259906970228933096407508161171919783
5869803511992549376 
 
plaintext blocks. 
 
But, there is no obvious way to extend the Playfair key square to three or 
more dimensions. 
 

… cryptographers … tried to extend [Wheatstone’s Playfair cipher’s] 
geometrical technique to trigraphic substitutions.  Nearly all have 
failed.  Perhaps the best known effort was that of Count Luigi Gioppi 
di Tükheim, who in 1897 produced a pseudo-trigrapphic system in 
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which two letters were monoalphabetically enciphered and the third 
depended only on the second.  Finally, about 1929, a young American 
mathematician. Jack Levine, used six 5 5×  squares to encipher 
trigraphs in an ingenious extension of the Playfair.  But he did not 
disclose his method. 
 
This was the situation when a 38-year-old assistant professor of 
mathematics at Hunter College in New York published a seven-page 
paper entitled “Cryptography in an Algebraic Alphabet” in The 
American Mathematical Monthly for June-July 1929.  He was Lester 
S. Hill [1891? – 1961].  …  Later in the summer in which his paper on 
algebraic cryptography appeared, he expanded the topic before the 
American Mathematical Society in Boulder, Colorado.  This lecture 
was later published in The American Mathematical Monthly [March 
1931] as “Concerning Certain Linear Transformation Apparatus of 
Cryptography.”   The Codebreakers by David Kahn 

 
The Hill cipher is a cryptosystem that enciphers blocks.  Any block size may 
be selected, but it might be difficult to find good keys for enciphering large 
blocks.  

 2



 
Block Ciphers 

 
In [most of the ciphers that we have studied], changing one letter in the 
plaintext changes exactly one letter in the ciphertext.  In the [Caesar], affine, 
and substitution ciphers, a given letter in the ciphertext always comes from 
exactly one letter in the plaintext.  In the Vigenère system, the use of blocks 
of letters corresponding to the length of the key, made the frequency analysis 
more difficult, but still possible since there was not interaction among the 
various letters in each block.  Block ciphers avoid these problems by 
encrypting blocks of several letters or numbers simultaneously.  A change of 
one character in a plaintext block should change potentially all the characters 
in the corresponding ciphertext block. 
 
The Playfair cipher … is a simple example of a block cipher, since it takes 
two-letter blocks and encrypts them to two-letter blocks.  A change of one 
letter of a plaintext pair will always change at least one letter, and usually 
both letters of the ciphertext pair.  However, blocks of two letters are too 
small to be secure, and frequency analysis, for example, is usually 
successful.  
 
The standard way of using a block cipher is to convert blocks of plaintext to 
blocks of ciphertext, independently and one at a time.  This is called 
electronic code book (ECB) mode.    However, there are ways to use 
feedback from the blocks of ciphertext in the encryption of subsequent 
blocks of plaintext.  This leads to the cipher block chaining (CBC) mode and 
cipher feedback (CFB) [and other modes] of operation.  Introduction to 
Cryptography and Coding Theory, Wade Trappe and Lawrence C. Washington. 
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Matrices 

 
The Hill cipher is usually taught by means of matrices. 
 
A matrix is just a rectangular array of numbers.  For example, 
 

1 9
3 7

⎡ ⎤
⎢ ⎥−⎣ ⎦

, , 
1 2 17

43 0 9
7 23 9

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

3
2
⎡ ⎤
⎢ ⎥
⎣ ⎦

, and 
0 6 8 23 65
9 76 1 98 10

11 7 34 72 1

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
are all matrices.   
 
The dimension of a matrix is given as  
 

number of rows × number of columns. 
 
For the four matrices given above, the dimensions are 2 2× , , 2 , and 

, respectively.  The dimensions are read as “2 by 2, 3 by 3, 2 by 1, and 3 
by 5.” 

3 3× 1×
3 5×

 
If the number of rows equals the number of columns, the matrix is said to be 
a square matrix.  The first two matrices above are square matrices. 
 
If the matrix has only one column, the matrix is said to be a column matrix.  
The third matrix above is a column matrix. 
 
We will deal exclusively with square and column matrices. 
 
Matrices can be added, subtracted, multiplied, and in some cases divided just 
like numbers.  The fact that an array of numbers can be treated as a single 
number is what permits the theory of matrices to extend cryptographic 
techniques to higher dimensions. 
 
 

Multiplication by Square Matrices 
 
One origin of matrices is the solution of systems of linear equations, and the 
multiplication of matrices reflects that use. 
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For example, consider this system of two linear equations in two variables x 
and y.  a, b, c, d, u, and v represent constants (i.e., numbers). 
 

ax by u
cx dy v

+ =
+ =

 

 
This system of equations can be represented by one matrix equation 
 

a b x u
c d y v
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 

 
The square matrix is called the coefficient matrix (a, b, c, and d are the 
coefficients of the variables x and y).  There are two column matrices – one 
consisting of the two variables x and y and the other of the two constants that 
appear on the right hand side of the system u and v. 
 
For the moment, we will only consider matrix multiplication of the form  
 

square matrix × column matrix 
 
Such a multiplication is only defined if the number of columns of the square 
matrix equals the number of rows of the column matrix. 
 
The system of equations gives us the pattern for multiplication. 
 

a b x ax by
c d y cx dy

+⎡ ⎤ ⎡ ⎤ ⎡
=⎢ ⎥ ⎢ ⎥ ⎢ +⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎦

 

 
The top entry of the product is calculated by, first, taking the entries of the 
first row of the square matrix and multiplying them "term-by-term" with the 
entries of the column matrix and then adding those products. 
 
The lower entry of the product is calculated by, first, taking the entries of the 
second row of the square matrix and multiplying them "term-by-term" with 
the entries of the column matrix and then adding those products. 
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For example,  
3 7 8 59
5 12 5 100
⎡ ⎤ ⎡ ⎤ ⎡

=⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎦

 
3 8 7 5 59
5 8 12 5 100
× + × =
× + × =

 

 

and  
3 7 18 68
5 12 2 114
⎡ ⎤ ⎡ ⎤ ⎡

=⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎦

 
3 18 7 2 68
5 18 12 2 114
× + × =
× + × =

 

 
 
Multiplication is defined similarly for higher dimension square and column 
matrices.  For example, for 3 3×  matrices 
 

a b c x ax by cz
d e f y dx ey fz
g h i z gx hy iz

+ +⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢= + +⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ + +⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎥
⎥⎦

⎤
⎥
⎥
⎥⎦

⎤
⎥
⎦

. 

 

For example,  
1 0 7 5 89
3 4 9 3 81

12 7 5 12 141

⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢− − =⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢−⎣ ⎦ ⎣ ⎦ ⎣

 
1 5 0 3 7 12 89
3 5 4 3 9 12 81

12 5 7 3 5 12 141

× + ×− + × =
− × + ×− + × =
× + − ×− + × =

 

 
Etc. 
 
To multiply two square matrices of the same dimension, we just do the 
multiplication one column at a time. 
 

For example, . 
3 7 8 18 59 68
5 12 5 2 100 114
⎡ ⎤ ⎡ ⎤ ⎡

=⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣
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3 7 8 59
5 12 5 100
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=  and 3 7 18 68
5 12 2 114
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= . 
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Hill's Cipher 

 
The situation with regard to the Hill cipher is much the same as that with 
regard to the Vigenère cipher.  What is usually referred to as the Hill cipher 
is only one of the methods that Hill discusses, and even then it is a weakened 
version.  We will comment more about this later, but first we will consider 
what is usually called the Hill cipher. 
 
The Hill cipher uses matrices to transform blocks of plaintext letters into 
blocks of ciphertext.  Here is an example that encrypts digraphs. 
 
Consider the following message: 
 

Herbert Yardley wrote The American Black Chamber. 
 
Break the message into digraphs: 
 

he rb er ty ar dl ey wr ot et he am er ic an bl ac kc 
ha mb er 

 
(If the message did not consist of an even number of letters, we would place 
a null at the end.) 
 
Now convert each pair of letters to its number-pair equivalent.  We will use 
our usual a = 01, …, z = 26. 
 

8 5   18 2   5 18   20 25   1 18   4 12   5 25   23 18   15 20   5 20   8 5   
1 13   5 18   9 3   1 14   2 12   1 3   11 3   8 1   13 2   5 18 

 

Now we encrypt each pair using the key which is the matrix . 
3 7
5 12
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
Make the first pair of numbers into a column vector (h (8) e (5)), and 
multiply that matrix by the key. 
 

3 7 8 59
5 12 5 100
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

 8



Of course, we need our result to be mod 26 
 

59 7
mod 26

100 22
⎡ ⎤ ⎡ ⎤

≡⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

 
The ciphertext is G (7) V (22). 
 
For the next pair r (18) b (2),  
 

3 7 18 16
mod 26

5 12 2 10
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

≡⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, 

 
and 16 corresponds to P and 10 corresponds to J.  Etc. 
 
Do this for every pair and obtain 
 

GVPJKGAJYMRHHMMSCCYEGVPEKGVCWQLXXOBMEZAKKG 
 
Encryption is like using a multiplicative cipher except that multiplying by a 
matrix allows us to encipher more than one letter at a time. 
 
 

Decryption 
 
Of course, we need a procedure for decrypting this.  However, just like for 
the multiplicative ciphers, we cannot use all matrices as keys because we 
cannot undo the multiplication for all matrices. 
 
To go from plaintext to ciphertext in the first example above we did  
 

3 7 8 7
mod 26

5 12 5 22
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

≡⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
Now we want to undo this; we want to find a matrix so that  
 

? ? 7 8
mod 26

? ? 22 5
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

≡⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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i.e, we want to find a matrix 
? ?
? ?
⎡ ⎤
⎢ ⎥
⎣ ⎦

 so that  

 
? ? 3 7 8 8

mod 26
? ? 5 12 5 5
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

≡⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

We want  to leave 
? ? 3 7
? ? 5 12
⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎣ ⎦ ⎣

⎤
⎥
⎦

8
5
⎡ ⎤
⎢ ⎥
⎣ ⎦

 unchanged.   

 
 

Matrix Inverse 
 

The matrix we are looking for is called the inverse of 
3 7
5 12
⎡ ⎤
⎢ ⎥
⎣ ⎦

 and is 

denoted . 
13 7

5 12

−
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

It is easy to verify that 
1

d b
a b ad bc ad bc
c d c a

ad bc ad bc

−
−⎡ ⎤

⎢ ⎥⎡ ⎤ − −= ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎢ ⎥
⎢ ⎥− −⎣ ⎦

.   

 

The product 
1 1 0

0 1

d b
a b a b a bad bc ad bc
c d c d c a c d

ad bc ad bc

−
−⎡ ⎤

⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡− −= =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢−⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣⎢ ⎥
⎢ ⎥− −⎣ ⎦

⎤
⎥
⎦

 which  

 
is called the identity matrix because the effect of multiplying a matrix by it 
is to leave the other matrix unchanged.  (It is like multiplying a number by 
1.) 
 

Notice that to calculate the inverse of the matrix a b
c d
⎡ ⎤
⎢ ⎥
⎣ ⎦

 we must be able to 

divide by ad – bc; i.e., we must have a multiplicative inverse for ad – bc.  
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Because we are working modulo 26, that means that ad – bc must be one of 
1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, or 25.  Otherwise, the multiplication 
cannot be undone; encryption cannot be undone. 
 
 

Determinant 
 

ad – bc is called the determinant of 
a b
c d
⎡ ⎤
⎢ ⎥
⎣ ⎦

.  Notice that the determinant of 

a  is just the product down the upper left to lower right diagonal minus 
the product down the upper right to lower left diagonal.  For a matrix to have 
an inverse modulo 26, the determinant of the matrix must be 1, 3, 5, 7, 9, 11, 
15, 17, 19, 21, 23, or 25 modulo 26.  To be able to undo multiplication by a 
matrix mod 26, the determinant of the matrix must be 1, 3, 5, 7, 9, 11, 15, 
17, 19, 21, 23, or 25 modulo 26.  For a matrix to be a key for a Hill cipher, 
the determinant of the matrix must be 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, or 
25 modulo 26.   

2 2×

 

The determinant of  is 3
3 7
5 12
⎡ ⎤
⎢ ⎥
⎣ ⎦

12 7 5 1 1mod 26× − × = ≡ .  So, the inverse 

of  is .  This is a special 

case because the determinant is 1.   

3 7
5 12
⎡ ⎤
⎢ ⎥
⎣ ⎦

13 7 12 7 12 19
mod 26

5 12 5 3 21 3

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ≡⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 
Here is an example of finding the inverse of a 2 2×  matrix when the 
determinant is not 1. 
 

The determinant of  is 
9 4
5 7
⎡ ⎤
⎢ ⎥
⎣ ⎦

9 7 4 5 63 20 43 17mod 26× − × = − = ≡ .  

Because 17 has a multiplicative inverse modulo 26, this matrix has an 
inverse.  The inverse of the matrix is 
 

7 4
17 17 mod 26

5 9
17 17

−⎡ ⎤
⎢ ⎥
⎢ ⎥
−⎢ ⎥
⎢ ⎥⎣ ⎦

. 
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Dividing by 17 modulo 26 is the same as multiplying by the multiplicative 
inverse of 17 modulo 26.  Recall that the multiplicative inverse of 17 is 23 
modulo 26.  So, the inverse of the matrix is 
 

7 4
7 23 4 2317 17 mod 26 mod 26

5 9 5 23 9 23
17 17

161 92 5 12
mod 26 mod 26

115 207 15 25

−⎡ ⎤
⎢ ⎥ × − ×⎡ ⎤

≡⎢ ⎥ ⎢ ⎥− − × ×⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

−⎡ ⎤ ⎡ ⎤
≡ ≡⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

 
Calculating the determinant of an n n×  matrix with n > 2 is more difficult.  
The pattern used for a  matrix is a very special case.  Usually 
calculators and computer algebra systems are able to calculate determinants. 

2 2×

 
Similarly, calculating the inverse of an n n×  matrix with n > 2 differs from 
calculating the inverse of a 2 2×  matrix.  Again, usually calculators and 
computer algebra systems are able to calculate inverses. 
 
 

Decryption 
 
We return to the earlier example.  Encrypting 
 

Herbert Yardley wrote The American Black Chamber. 
 

using the key  resulted in the ciphertext 
3 7
5 12
⎡
⎢
⎣ ⎦

⎤
⎥

 
GVPJKGAJYMRHHMMSCCYEGVPEKGVCWQLXXOBMEZAKKG 

 

We use the inverse of the key 12 19
21 3
⎡ ⎤
⎢ ⎥
⎣ ⎦

 to decrypt GV, which is the first 

digraph of the ciphertext. 
 
G orresponds to 7, and V corresponds to 22. 
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12 19 7 8

mod 26
21 3 22 5
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

≡⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

h (8) e (5). 
 
In a similar manner, we can decrypt the remainder of the ciphertext.
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Hill ciphers that encipher larger blocks 

 
Notice that the multiplicative cipher is just the 1 1×  case of the Hill cipher; 
individual letters are enciphered one at a time. 
 
  invertible matrices modulo 26 (an invertible matrix is a matrix that has 
an inverse) can be used to encipher digraphs. 3
2 2×

3×  invertible matrices 
modulo 26 can be used to encipher trigaphs.  4 4×  invertible matrices 
modulo 26 can be used to encipher blocks of 4 letters.  Etc. 
 
Finding keys is pretty much a trial and error process.  That means that it can 
be very difficult to find a key for encrypting large blocks. 
 
 

Ciphertext Attack 
 
Here is a ciphertext that is known to be enciphered with a Hill cipher. 
 
wbvec itxwb mphsr hytyw gmqdq egxyf yncta zdkyi eenin zkygh 
yntgb pbpkl azfgy ikkru drzcp aaaci fueqg ywbuu urozm vfgmy 
vkwwo zbpyn ezsbg jfynz yvmeo zctiu ghfgu aekds ayicc tkrus 
xgbpz cufve lvsjg lklls vefyt onmdk 
 
The first thing to be determined would be the size of the blocks.  If the key 
were an  matrix, then n must divide the number of letters in the 
ciphertext.  This ciphertext has 180 letters.  There are many possibilities for 
n, but let us assume that it was encrypted using a 

n n×

2 2×  key.  (That’s a really 
good assumption.) 
 
Because such a key encrypts digraphs, we might begin by looking at digraph 
frequencies.   
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Here are the digraphs that appear more than once and their frequencies: 
 

Digraph   Frequency 
 

bp            4 
yn            4 
ct            3 
fg            3 
fy            3 
oz            3 
ve            3 
wb            3 
yi            3 
zc            3 
aa            2 
az            2 
ci            2 
dk            2 
gb            2 
gh            2 
gm            2 
gy            2 
hy            2 
kl            2 
kr            2 
ky            2 
nz            2 
ru            2 
uu            2 
yt            2 
yv            2 
yw            2 

 
If we’re lucky the most common plaintext digraph th will correspond to 
(one of) the most common ciphertext digraph(s).  BP and YN each appear 4 
times in the ciphertext.  Let’s assume that ciphertext BP corresponds to 
plaintext th.  (Another really good assumption.) 
 
We could try to determine the key or the key inverse.  Because we are trying 
to determine the plaintext, let’s try to directly determine the key inverse.  We 

want to find a  matrix  that is the inverse of the key.  If we are 

correct that B(2)P(16) corresponds to t(20)h(8), then 

2 2× e f
g h
⎡
⎢
⎣ ⎦

⎤
⎥

0
 

2 2
16 8

e f
g h
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
=  
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This corresponds to two linear equations: 
 

2 16
2 16

e f
g h

20
8

+ =
+ =

 

 
Because this Hill cipher (we assume) encrypts digraphs, the key inverse is a 

matrix.  The key inverse has 2 2× 22 4=  entries e, f, g, and h that must be 
determined.  We would like to have four equations – two involving e and f 
and two involving g and h. 
 
If we knew another plaintext/ciphertext digraph correspondence, we would 
have the other two equations that we need.  Perhaps, the next most common 
ciphertext digraph YN corresponds to the next most common plaintext 
digraph he. (But, it doesn’t.) 
 
We could try assuming that YN corresponds to another common digraph, but 
here is another technique. 
 
The most common letter that follows plaintext th is e.  We might examine 
the digraphs that follow BP in the ciphertext and assume that the next 
ciphertext digraph corresponds to plaintext e_.  We notice that we have  
BP KL, BP BP, BP YN, and BP ZC.  If we are correct that BP 
corresponds to th, the second pair of digraphs corresponds to plaintext th 
th.  In each of the other cases, we will assume that the two ciphertext 
digraphs correspond to th e_.  Making this assumption, we should be 
correct more than half the time.   
 

So, if KL corresponds to e_, 511
*12

e f
g h
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦⎣ ⎦
=  which yields the equation 

.  If YN corresponds to e_,  11 12 5e f+ =
525
*14

e f
g h
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦⎣ ⎦
=  which yields the 

equation .  If ZC corresponds to e_,   which 

yields the equation .   

25 14 5e f+ =
526
*3

e f
g h
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦⎣ ⎦
=

26 3 5e f+ =
 
Each of these can be solved simultaneously with,12 16 20e f+ = which was 
obtained by assuming that BP corresponds to th.  All of the solving, 
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however, is to be done modulo 26.  We may use whatever techniques we 
know for solving systems of linear equations provided that we divide only 
when division is possible – we can divide by only 1, 3, 5, 7, 9, 11, 15, 17, 
19, 21, 23, and 25.  We will use Mathematica to solve the equations. 
 
Solve@23 e + 2 f m 9 && 22 e + 5 f m 13 && Modulus m 26,
8 <De, f
88 <<

 
Modulus→ 26, e→ 1, f→ 19  

Solve@23 g + 2 h m 14 && 22 g + 5 h m 1 && Modulus m 26,
g, h8 <D

88 <<
 

Modulus→ 26, g→ 20, h→ 11  
Solve@2 e + 16 f m 20 && 11 e + 12 f m 5 && Modulus m 26,

e, f8 <D  
Solve::svars :  Equations may not

give solutions for all "solve" variables.  
88 < 8 <<Modulus→ 26, e→ 1, f→ 6 , Modulus → 26, e → 1, f → 19  
Solve@2 e + 16 f m 20 && 25 e + 14 f m 5 && Modulus m 26,

e, f8 <D  
Solve::svars :  Equations may not

give solutions for all "solve" variables.  
88 < 8 <<Modulus→ 26, e→ 1, f→ 6 , Modulus → 26, e → 1, f → 19  
Solve@2 e + 16 f m 20 && 26 e + 3 f m 5 && Modulus m 26,

e, f8 <D  
Solve::svars :  Equations may not

give solutions for all "solve" variables.  
8
 
8Modulus→ 26, e→ 1, f→ 19<, 8Modulus → 26, e → 14, f → 19<<  

Each system of congruences has two solutions modulo 26.  e = 1 and f = 19 
is common to all of the pairs of solutions.  That would happen if in each of 
these three cases th were followed by e_.  Let us assume that is the case.  
(That’s another really good assumption.)  We could later try the other 
possibilities if needed. 
 

So, we believe that the key inverse is 1 19
g h
⎡ ⎤
⎢ ⎥
⎣ ⎦

. 
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We have one more congruence: 2 16 8mod26g h+ = .  It is possible to solve a 
congruence of the form  provided that the greatest common 
divisor of  a, b, and n also divides c.  In our case, the greatest common 
divisor of a=2, b=16, and n=26 is 2 which does divide c=8.  It is necessary 
to reduce the modulus; remove the factor of 2 to get 

modax by c n+ =

8 4mod13g h+ = .  Then 
rearrange the terms to get 4 8 mod13g h= − .  Modulo 13, the possible values 
of h are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12.  We substitute these values 
for h one at a time and solve for g.  It’s easy, but again we show 
Mathematica output. 
 
Solve@g m 4 − 8∗0 && Modulus m 13, gD
88 <<

 
Modulus→ 13, g→ 4  

Solve g m 4 − 8∗1 && Modulus m 13, gD@
88 <<

 
Modulus→ 13, g→ 9  

Solve g m 4 − 8∗2 && Modulus m 13, gD@
88 <<

 
Modulus→ 13, g→ 1  

Solve g m 4 − 8∗3 && Modulus m 13, gD@
88 <<

 
Modulus→ 13, g→ 6  

Solve g m 4 − 8∗4 && Modulus m 13, gD@
88 <<

 
Modulus→ 13, g→ 11  

Solve g m 4 − 8∗5 && Modulus m 13, gD@
88 <<

 
Modulus→ 13, g→ 3  

Solve g m 4 − 8∗6 && Modulus m 13, gD@
88 <<

 
Modulus→ 13, g→ 8  

Solve g m 4 − 8∗7 && Modulus m 13, gD@
88 <<

 
Modulus→ 13, g→ 0  

Solve g m 4 − 8∗8 && Modulus m 13, gD@
88 <<

 
Modulus→ 13, g→ 5  

Solve g m 4 − 8∗9 && Modulus m 13, gD@
88 <<

 
Modulus→ 13, g→ 10  

Solve g m 4 − 8∗10 && Modulus m 13, gD@
88 <<

 
Modulus→ 13, g→ 2  

Solve g m 4 − 8∗11 && Modulus m 13, gD@
88 <<

 
Modulus→ 13, g→ 7  

Solve g m 4 − 8∗12 && Modulus m 13, gD@  
88Modulus→ 13, g→ 12<<  
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For example, if h = 3, g = 6 mod 13.  But, we are ultimately interested in 
what happens modulo 26.  6 and 6 + 13 = 19 are congruent mod 13, but they 
are not congruent mod 26.  So, each solution mod 13 becomes two solutions 
mod 26. 
 
 h   g mod 13   g mod 26 
 0   4    4, 17 
 1   9    9, 22 
 2   1    1, 10 
 3   6    6, 19 
 4   11    11, 24 
 5   3    3, 22 
 6   8    8, 21 
 7   0    0, 13 
 8   5    5, 18 
 9   10    10, 23 
 10   2    2, 15 
 11   7    7, 20 
 12   12    12, 25 
 
The determinant of the key inverse must be one of 1, 3, 5, 7, 9, 11, 15, 17, 

19, 21, 23, or 25 mod 26.  So, try each of these pairs of g and h in  

and calculate the determinant mod 26.  Again, we use Mathematica. 

1 19
g h
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
Mod Det 1, 19 , 0, 4 , 26@ @88 < 8 <<D D  
4  
Mod Det 1, 19 , 0, 17 , 26@ @88 < 8 <<D D  
17 
Mod Det 1, 19 , 1, 9 , 26@ @88 < 8 <<D D  
16 
Mod Det 1, 19 , 1, 22 , 26@ @88 < 8 <<D D  
3  
Mod Det 1, 19 , 2, 1 , 26@ @88 < 8 <<D D  
15 
Mod Det 1, 19 , 2, 10 , 26@ @88 < 8 <<D D  
24 
Mod Det 1, 19 , 3, 6 , 26@ @88 < 8 <<D D  
1  
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Mod Det 1, 19 , 3, 19 , 26@ @88 < 8 <<D D  
14 
Mod Det 1, 19 , 4, 11 , 26@ @88 < 8 <<D D  
13 
Mod Det 1, 19 , 4, 24 , 26@ @88 < 8 <<D D  
0  
Mod Det 1, 19 , 5, 3 , 26@ @88 < 8 <<D D  
12 
Mod Det 1, 19 , 5, 22 , 26@ @88 < 8 <<D D  
5  
Mod Det 1, 19 , 6, 8 , 26@ @88 < 8 <<D D  
24 
Mod Det 1, 19 , 6, 21 , 26@ @88 < 8 <<D D  
11 
Mod Det 1, 19 , 7, 0 , 26@ @88 < 8 <<D D  
23 
Mod Det 1, 19 , 7, 13 , 26@ @88 < 8 <<D D  
10 
Mod Det 1, 19 , 8, 5 , 26@ @88 < 8 <<D D  
9  
Mod Det 1, 19 , 8, 18 , 26@ @88 < 8 <<D D  
22 
Mod Det 1, 19 , 9, 10 , 26@ @88 < 8 <<D D  
21 
Mod Det 1, 19 , 9, 23 , 26@ @88 < 8 <<D D  
8  
Mod Det 1, 19 , 10, 2 , 26@ @88 < 8 <<D D  
20 
Mod Det 1, 19 , 10, 15 , 26@ @88 < 8 <<D D  
7  
Mod Det 1, 19 , 11, 7 , 26@ @88 < 8 <<D D  
6  
Mod Det 1, 19 , 11, 20 , 26@ @88 < 8 <<D D  
19 
Mod Det 1, 19 , 12, 12 , 26@ @88 < 8 <<D D  
18 
Mod Det 1, 19 , 12, 25 , 26@ @88 < 8 <<D D  
5  
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The possible key inverses are 1 19
17 0
⎡ ⎤
⎢ ⎥
⎣ ⎦

, 1 19
22 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

, 1 19
1 2
⎡ ⎤
⎢ ⎥
⎣ ⎦

, 1 19
6 3
⎡ ⎤
⎢ ⎥
⎣ ⎦

, 

, , , 1 19
3 5
⎡ ⎤
⎢ ⎥
⎣ ⎦

1 19
22 5
⎡ ⎤
⎢ ⎥
⎣ ⎦

1 19
21 6
⎡ ⎤
⎢ ⎥
⎣ ⎦

1 19
0 7
⎡ ⎤
⎢ ⎥
⎣ ⎦

, 1 19
5 8
⎡ ⎤
⎢ ⎥
⎣ ⎦

, 1 19
10 9
⎡ ⎤
⎢ ⎥
⎣ ⎦

, 1 19
15 10
⎡ ⎤
⎢ ⎥
⎣ ⎦

, 

, and . 1 19
20 11
⎡ ⎤
⎢ ⎥
⎣ ⎦

1 19
25 12
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
 
We have reduced the problem to checking 13 possible key inverses.  We try 

to decrypt the ciphertext with each possible inverse.  1 19
20 11
⎡ ⎤
⎢ ⎥
⎣ ⎦

 is the correct 

key inverse. 
 
 

Known plaintext attack 
 
The cryptanalysis that was done above is a ciphertext only attack – only 
ciphertext was known.  It can be difficult to cryptanalyze a Hill cipher using 
a ciphertext only attack, but it is easy to break using a known plaintext 
attack.  A known plaintext attack means that we know a bit of ciphertext 
and the corresponding plaintext – a crib.  This is not an unusual situation.  
Often messages have stereotypical beginnings (e.g., to …, dear …) or 
stereotypical endings (e.g, stop) or sometimes it is possible (knowing the 
sender and receiver or knowing what is likely to be the content of the 
message) to guess a portion of a message.   
 
For a  Hill cipher, if we know two ciphertext digraphs and the 
corresponding plaintext digraphs, we can easily determine the key or the key 
inverse.  Assume that we know that the plaintext of our ciphertext message 
that begins WBVE is inma.  Because WB corresponds to in 

, and because VE corresponds to ma .  

This results in two sets of linear congruences modulo 26: 

2 2×

23 9
2 14

e f
g h
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
=

22 13
5 1

e f
g h
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
=

 
23 2 9
22 5 13

e f
e f

+ =
+ =
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and 
 

23 2 14
22 5 1

g h
g h

+ =
+ =

 

 
We solve the systems modulo 26 using Mathematica. 
 
Solve@23 e + 2 f m 9 && 22 e + 5 f m 13 && Modulus m 26,
8 <De, f
88 <<

 
Modulus→ 26, e→ 1, f→ 19  

Solve@23 g + 2 h m 14 && 22 g + 5 h m 1 && Modulus m 26,
g, h8 <D  

88
 

Modulus→ 26, g→ 20, h→ 11<<  

Again (with a lot less assuming) we find that the key inverse is . 1 19
20 11
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
 

Two More Examples of a Known Plaintext Attack 
 
Here are two examples of cryptanalyzing a Hill cipher with a known 
plaintext attack.  Each example is done by hand – without using 
Mathematica.  In example one, there is no need to reduce the modulus; in 
example two the modulus must be reduced. 
 
 
Example one: 
 
Ciphertext:  FAGQQ  ILABQ  VLJCY  QULAU  STYTO  JSDJJ  
PODFS  ZNLUH  KMOW 
 
We are assuming that this message was encrypted using a 2 2×  Hill cipher 
and that we have a crib.  We believe that the message begins “a crib.” 
 

ac ri
[1, 3] [18, 9]
[6, 1] [7, 17]
FA GQ
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We could either solve for the key or the key inverse.  To solve for the key, 
we would solve 
 

1 6
3 1

a b
c d
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
and 
 

18 7
9 17

a b
c d
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
To solve for the key inverse, we would solve 
 

6 1
1 3

e f
g h
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
and 
 

7 18
17 9

e f
g h
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
We will solve for the key. 
 

1 6
3 1

a b
c d
⎡ ⎤ ⎡ ⎤ ⎡

=⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎦

 represents two linear equations: 

 
3 6
3 1

a b
c d

+ =
+ =

 

 

and  represents  18 7
9 17

a b
c d
⎡ ⎤ ⎡ ⎤ ⎡

=⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎦

 
18 9 7
18 9 17

a b
c d

+ =
+ =

 

 
Now we solve the following linear congruences mod 26. 
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3
18 9 7

a b
a b

+ =⎧
⎨ + =⎩

6

6

8

  and  3 1
18 9 17

c d
c d

+ =⎧
⎨ + =⎩

 

We will solve the pair of congruences  first. 3
18 9 7

a b
a b

+ =⎧
⎨ + =⎩

 
To eliminate an unknown, multiply congruence 1 by 3 
 

  3 9 1
18 9 7

a b
a b

+ =⎧
⎨ + =⎩

 
and subtract congruence 2 from congruence 1. 
 
  15 11a− =
 
Modulo 26, -15 is 11. 
 
  11 11a =
 
Divide by 11 to obtain a. 
 
  1a =
 
Now substitute this in congruence 1. 
 
  1 3 6b+ =
 
  3 5b =
 
The multiplicative inverse of 3 is 9 modulo 26. 
 
  9 3 9 5 45 19mod 26b b= × = × = =
 
So, the key looks like 
 

  1 19
c d
⎡ ⎤
⎢ ⎥
⎣ ⎦
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Now solve the system   3 1
18 9 17

c d
c d

+ =⎧
⎨ + =⎩

 
3 9

18 9 17
c d
c d

+ =⎧
⎨ + =⎩

3

6

 

 
15 14c =  
 

7 15 7 14 98 20mod 26c c= × = × = =  
 
20 3 1d+ =  
 
3 19 7 mod 2d = − =  
 

9 3 9 7 63 11mod 26d d= × = × = =  
 

The key is . 1 19
20 11
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
 
Example two: 
 
We are assuming that we have a ciphertext message was that encrypted 
using a  Hill cipher and that we have a crib.  We believe that ciphertext 
UKJN corresponds to plaintext word. 

2 2×

 
 

wo rd
[23, 15] [18, 4]
[21, 11] [10, 14]

UK JN

 

 
The two systems of congruences are: 
 

23 15 21
18 4 10

a b
a b

+ =⎧
⎨ + =⎩

  and  23 15 11
18 4 14

c d
c d

+ =⎧
⎨ + =⎩
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We will solve the system on the left. 
 
To eliminate an unknown, multiply congruence number 1 by 4 and 
congruence number 2 by 15 both modulo 26. 
 

  14 8 6
10 8 20

a b
a b

+ =⎧
⎨ + =⎩

 
Subtract the second congruence from the first. 
 
  4 14 12mod 2a = − = 6

k
 
This congruence corresponds to the equation 4 12 26a = + , 4a is 12 plus a 
multiple of 26.  Notice that 2 divides the coefficient of a, the constant 12, 
and the modulus 26.  We reduce the modulus by dividing by 2. 
 
  2 6 13a k= +
 
and we have a congruence modulo 13. 
 
  2 6mod1a = 3

3

 
This congruence does not have a common factor among the coefficient, the 
constant, and the modulus.   
 
Here are the multiplicative inverses of the integers modulo 13: 
 
 Number   1 2 3  4 5  6  7  8  9  10  11  12 
 Multiplicative inverse  1 7 9 10 8 11  2  5  3  4   6   12  

 
To find a, multiply 2 6  by the multiplicative inverse of 2, which is 
7. 

mod1a =

 
  7 2 7 6 42 3mod13a a= × = × = =
 
So, a is 3 modulo 13.  But, there are two integers mod 26 that are 3 mod 13, 
namely, 3 and 3 + 13 = 16.  So, there are two possible values for a. 
 
If a = 3,  
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  18 3 4 10b× = =
 
  54 4 10b+ =
 
  2 4 10b+ =
 
  4 8mod 2b = 6

3

5

 
  2 4mod1b =
 
  7 2 7 4 26 2mod13b b= × = × = =
 
So, b=2 or b = 2+13 = 15 modulo 16. 
 
If a = 16,  
 
  18 16 4 10b× + =
 
  288 4 10b+ =
 
  2 4 10b+ =
 
which yields the same solutions for b. 
 
Here are the 4 possible solutions for a and b. 
 

3 2
3 1

16 2
16 15

a b
a b
a b
a b

= =
= =
= =
= =

 

 

Now solve . 23 15 11
18 4 14

c d
c d

+ =⎧
⎨ + =⎩

 
 

14 8 18
10 8 2

a b
a b

+ =⎧
⎨ + =⎩

 

 
4 16mod 26c =  

 27



 
2 8mod1c = 3

6

8

 
 

7 2 14 7 8 56 4mod13c c c= × = = × = =  
 
So, c = 4 or c = 4 + 13 = 17 modulo 26. 
 
If c = 4,  
 
  18 4 4 14d× + =
 
  20 4 14d+ =
 
  4 6 20mod 2d = − =
 
  2 10mod13d =
 
  7 2 7 10 5mod13d d= × = × =
 
So, d = 5 or d = 5  + 13 = 18 modulo 26. 
 
If c = 17,  
 
  18 17 4 14d× + =
 
  20 4 14d+ =
 
and we are led to the same solutions for d. 
 

4 5
4 1

17 5
17 18

c d
c d
c d
c d

= =
= =
= =
= =

 

 
There are 16 possible  matrices that could be the key. 2 2×
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3 2 3 2 3 2 3 2
4 5 4 18 17 5 17 18

3 15 3 15 3 15 3 15
4 5 4 18 17 5 17 18

16 2 16 2 16 2 16 2
4 5 4 18 17 5 17 18

16 15 16 15 16 15 16 15
4 5 4 18 17 5 17 18

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎦
⎤
⎥
⎦
⎤
⎥
⎦
⎤
⎥
⎦

 

 
First, calculate the determinant of each.  Any matrix that does not have an 
invertible determinant modulo 26 (i.e., the determinant is not one of 1, 3, 5, 
7, 9, 11, 15, 17, 19, 21, 23, 25 modulo 26) can be eliminated.  Then try to 
decipher the messages with each of the remaining messages.  The matrix that 
yields plaintext is the key. 
 
Two more examples appear in an appendix. 
 
To break a Hill cipher with a 2 2×  key requires determining four entries – 
the four entries of the key or the four entries of the key inverse.  We can do 
that if we know the correspondence between plaintext and ciphertext for two 
digraphs because the correspondences will permit us to set up two systems 
of congruences – each system has two congruences of two unknowns. 
 
To break a Hill cipher with a n n×  key requires determining  entries – the 

entries of the key or the entries of the key inverse.  We can do that if 
we know the correspondence between plaintext and ciphertext for n n-graphs 
because the correspondences will permit us to set up n systems of 
congruences – each system has n congruences of n unknowns. 

2n
2n 2n

 
The reason that we can solve these systems of congruences is because they 
are linear.  The solutions of linear systems of equations of congruences is 
well-understood. 
 
 

Linear Transformations 
 
What do we mean by linear? 
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First, there are two more operations on matrices that we will briefly 
consider. 
 
Adding two matrices of the same size means to add their corresponding 

entries; e.g., .  In particular, for a column matrix,  

. 

3 9 5 6 8 3
5 2 3 0 2 2
⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣

−
+ =
−

⎤
⎥
⎦

−

1

⎤
⎥
⎦

−

⎤
⎥

52 3
129 2

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦

− −+ =

 
Multiplying a matrix by a number means to multiply each entry of the matrix 

by that number; e.g., .  In particular, for a column 

matrix, .  This multiplication is called scalar multiplication 

because the entries of the matrix are scaled. 

5 2 15 63
7 3 21 6
⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎣ ⎦ ⎣

− =

5 204
7 28

⎡⎡ ⎤
⎢⎢ ⎥

⎣ ⎦ ⎣ ⎦

−
− =

−

 
A transformation T is said to be a linear transformation if it satisfies the 
following two properties: 
 

( ) ( ) ( )
( ) ( )

T x y T x T y
T ax aT x

+ = +
=

 

 
where a is a number. 
 
Multiplication of a column matrix by a square matrix is seen to be a linear 
transformation.  For example, 
 

3 7 8 18 3 7 8 3 7 18
5 12 5 2 5 12 5 5 12 2

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣⎝ ⎠

+ = +
⎤
⎥
⎦

⎤
⎥
⎦

 

and 
 

3 7 8 3 7 82 2
5 12 5 5 12 5

⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣⎝ ⎠

= . 

 
Linearity also holds when the operations are done modulo 26; so, the 
encryption process of a Hill cipher is a linear transformation.   
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Mathematicians like linear transformations because mathematicians 
understand a great deal about linear transformations.  Cryptographers do not 
like linear transformations because mathematicians understand a great deal 
about linear transformations.   
 
Because the Hill cipher relies on matrix multiplication, which is a linear 
transformation, the Hill cipher can be cryptanalyzed.  In fact, a known 
plaintext attack requires knowing only the correspondence between plaintext 
and ciphertext for two digraphs (between plaintext and ciphertext strings of 
length 4) when the key is a 2 2×  matrix and requires knowing only the 
correspondence between plaintext and ciphertext for n n-graphs (between 
plaintext and ciphertext strings of length ) when the key is an  
matrix.  That amount of information determines a system of linear 
congruences that can be solved, and the entries of the key or of the key 
inverse can be determined.  It might not be a pleasant process, but it can be 
done.  (What was said above is not quite true.  We are claiming that a system 
of n linear congruences in n unknowns has a solution.  Such a system might 
not have a solution; it might be indeterminant.  What is needed for a solution 
is that that system of congruences be independent – that there not be 
redundancy in the system.  For example, when using a Hill cipher with a 

 key, if the plaintext-ciphertext correspondence that we knew were 
acac = FAFA, we would not have enough information to determine the key.  
If there is redundancy, usually using just “a few more” plaintext-ciphertext 
correspondences eliminates the redundancy.) 

2n n n×

2 2×

 
Consider the  Hill cipher.  If we know only two correspondences 
between plaintext and ciphertext digraphs, we can determine the key because 
the encryption process is linear.  Consider the Playfair cipher.  If we know 
only two correspondences between plaintext and ciphertext digraphs, it is 
unlikely that we could determine the key because the Playfair cipher is non-
linear. 

2 2×

 
Cryptographers should attempt to avoid linearity when constructing 
cryptosystems. 
 
 

Introducing Non-linearity into a Hill Cipher 
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Hill’s papers contain techniques that are much more secure than the 
technique that we have called the Hill cipher.  Hill’s papers include ciphers 
that are nonlinear. 
 
One nonlinear technique used by Hill is to do a (nonlinear) simple 
substitution cipher – a permutation -- prior to the matrix multiplication.  Hill 
uses the following substitutions: 
 
a  b  c  d  e  f  g  h  i  j  k  l  m  n  o  p  q  r  s  t  u  v  w  x  y  z  
5  23 2  20 10 15 8  4  18 25 0  16 13 7  3  1  19 6  12 24 21 17 14 22 11 9 
 
For example, th becomes 24 4 and then 
 

3 7 24 22
5 12 4 12
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
V (22) L (12). 
 
Composing nonlinear substitution and linear mixing is the basis of what are 
called Feistel ciphers.  DES the Data Encryption Standard (which was the 
standard for data encryption from 1977 until the selection of AES the 
Advanced Encryption Standard in 2001) is a Feistel cipher. 
 
Another nonlinear technique used by Hill is similar to what we did when we 
went from the multiplicative cipher (C = mp) to the affine cipher (C = mp + 
b) by adding a shift.  Multiplicative ciphers are linear ciphers; affine ciphers 
are not linear ciphers.  Hill adds a shift to what we have called the Hill 
cipher.  For example, (using a = 1, …, z = 26) to encrypt h (8) e (5) 
 

3 7 8 6 13
5 12 5 20 16
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡

+ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥
⎦

 

 
M (13) P (16). 
 
Hill includes further nonlinear generalizations.  
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Size of the Keyspace 

 
Multiplicative ciphers have a very small keyspace; the key must be one of 1, 
3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25.  How large is the keyspace for a Hill 
cipher? 
 
There are  matrices having entries modulo 26; i.e., each 
entry must be 0, 1, …, 25.  But, recall that for a matrix to be usable as a key 
for a Hill cipher the matrix must have an inverse.  How many of these 

426 456976= 2 2×

2 2×  
matrices are invertible?  This is answered for n n×  matrices in “On the 
Keyspace of the Hill Cipher” by Overby, Traves, and Wojdylo in 
Cryptologia, January 2005; there are 157248 possible 2 2×  keys. 
 
Hill ciphers are asymmetric ciphers: one key is used for encryption and a 
second key (the key inverse) is used for decryption.  Of course, anyone who 
knows some elementary linear algebra can construct the key inverse from 
the key, but the encryption and decryption keys are not the same – except in 
certain cases.  Hill, in his second paper, discusses using involutory matrices 
(matrices that are self-inverse) as keys.   
 

0 1 25
4 22 4
3 22 4

⎡ ⎤
⎢
⎢
⎢ ⎥⎣ ⎦

⎥
⎥  is involutory. 

 
Using involutory keys would make encryption and decryption completely 
symmetric, but this significantly restricts the number of keys (see the 
previously cited article in Cryptologia.) 
 
 

Diffusion and Confusion 
 
Two properties are often considered when discussing the strength of modern 
block ciphers. 
 

Claude Shannon, in one of the fundamental papers on the theoretical 
foundations of cryptography [“Communication theory of secrecy 
systems,” Bell Systems Technical Journal 28 (1949), 656 – 715], gave 
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two properties that a good cryptosystem should have to hinder 
statistical analysis:  diffusion and confusion. 

  
Diffusion means that if we change a character of the plaintext, then 
several characters of the ciphertext should change, and similarly, if we 
change a character of the ciphertext, then several characters of the 
plaintext should change.  We saw that the Hill cipher has this 
property.  This means that frequency statistics of letters, [digraphs], 
etc. in the plaintext are diffused over several characters in the 
ciphertext, which means that much more ciphertext is needed to do a 
meaningful statistical attack. 

 
Confusion means that the key does not related in a simple way to the 
ciphertext.  In particular, each character of the ciphertext should 
depend on several parts of the key.  For example, suppose we have a 
Hill cipher with an  matrix, and suppose we have a plaintext-
ciphertext pair of length  with which we are able to solve for the 
encryption matrix.  If we change one character of the ciphertext, one 
column of the matrix can change completely.  Of course, it would be 
more desirable to have the entire key change.  When a situation like 
that happens, the cryptanalyst would probably need to solve for the 
entire key simultaneously, rather than piece by piece. 

n n×
2n

 
The Vigenère and substitution ciphers do not have the properties of 
diffusion and confusion, which is why they are so susceptible to 
frequency analysis.  Introduction to Cryptography and Coding Theory, Wade Trappe and 
Lawrence C. Washington. 

 
Keys containing lots of zero entries weaken diffusion. 
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Hill ciphers with n n×  keys form a group 
 
Encrypting with a Hill cipher and re-encrypting with another key of the 
same size does not improve security because the Hill ciphers with  keys 
form a group.   

n n×

 
For example, if we encrypted digraphs with a Hill cipher using the key 

 (which has determinant 1 modulo 26) and then encrypted that 

ciphertext using a Hill cipher with key 

3 7
5 12
⎡
⎢
⎣ ⎦

⎤
⎥

9 4
5 7
⎡ ⎤
⎢ ⎥
⎣ ⎦

 (which has determinant 17 

modulo 26), the result would be the same as encrypting once with the 

key .  Because “the 

determinant of a product is the product of the determinants” (even modulo 

26), the determinant of  is17

9 4 3 7 47 111 21 7 mod ulo 26
5 7 5 12 50 119 24 15
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

= =

21 7
24 15
⎡ ⎤
⎢ ⎥
⎣ ⎦

1 17 modulo 26× = ; so, it is a valid Hill 

cipher key. 
 
The point is, you have only one shot at using a Hill cipher – re-encrypting 
does not improve security. 
 
 

Public key cryptology 
 
In 1976 a paper appeared that would revolutionize cryptology.  The paper 
was by Whitfield Diffie and Martin Hellman.  Their paper "New Directions 
in Cryptography" was published in the IEEE Transactions on Information 
Theory (vol. 22, no. 6, November 1976).  Diffie and Hellman were 
concerned with the key distribution problem that would be created by 
increased use of communications networks like the internet (which 
developed later).  The problem is:  How do you distribute secret keys to 
people with whom you have not communicated before?  Using classical 
cryptology, (essentially) the same key is used to encrypt and to decrypt 
messages.  If you know how to encrypt, then you know how to decrypt.  The 
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usual way to distribute secret keys was by courier. Imagine that you’ve 
never purchased from Amazon.com before, but you just found a book on 
their website that you’d like to order.  You need to send credit card 
information to Amazon, but you’d like that information to be encrypted.  
What do you do?  You don’t want to have to contact Amazon and wait until 
they have a courier show up at your door with a secret key.  Diffie and 
Hellman suggested a solution. 
 
Classical cryptology uses essentially the same key for encryption and 
decryption.  Such a key is called a symmetric key.  Diffie and Hellman 
suggested that there be two keys – a public key which would be used for 
encryption and a private key which would be used for decryption.  
Communication would be a one-way process.  The sender would look up the 
receiver’s public key and use that key to encrypt the message.  Upon 
receiving the message, the receiver would use the private key to decrypt it.  
The important point, of course, is that knowledge of the encryption key 
should yield no information about the decryption key.  This is called public 
key or asymmetric key cryptography.   
 
Public key cryptography solves the key distribution problem.  If you want to 
send your credit card number to Amazon, you (actually your web browser 
does this) look up Amazon’s public key and use that key to encrypt your 
credit card number.  There is no need to keep the encryption key secret – 
everyone may know it. 
 
But, is such a scheme possible?  Is it possible to encyrpt with one key and 
decrypt with another and design the keys in such a way that knowing the 
encryption key does not provide enough information to construct the 
decryption key? 
 
In their paper, Diffie and Hellman did not describe such an encryption 
system, but they suggested that one was needed.  Various systems 
developed, and today they dominate much of cryptology.  These public key  
systems seem to be characterized by having the encryption key being a 
rather easy calculation – but a calculation that is not possible to undo 
without additional information (which the receiver keeps private). 
 
The Hill cipher suggests how such a method might work.  Now, the Hill 
cipher is not a public key encryption scheme because anyone who knows the 
encryption matrix can, using elementary linear algebra, calculate the 
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decryption matrix – the key inverse.  But, assume that it were not known 
how to calculate the inverse of a matrix.  Then, the Hill cipher would be a 
public key encryption scheme.  The receiver (usually called Bob) could 
construct an encryption matrix and its inverse and make public his 
encryption matrix.  Any sender (usually called Alice) who wanted to send a 
message to Bob could look up Bob’s encryption matrix and use it to encrypt 
a message to Bob.  When Bob received the ciphertext he could use the 
inverse of the matrix (which he is keeping a secret) to decrypt the ciphertext. 
 
Remember that this is one-way communication.  If Bob wanted to reply to 
Alice, he would have to look up Alice’s encryption matrix and use that 
matrix to encrypt his reply.  Then Alice could use the inverse of her 
encryption matrix (which she is keeping a secret) to decrypt the ciphertext of 
Bob’s reply. 
 
This would solve the problem of key distribution because all encryption keys 
are public. 
 
But, can we actually find such mathematical processes – processes that are 
easy to do but hard or impossible to undo without additional, secret 
information? 
 
It is not surprising that multiplication/factoring was an early choice.  It is 
easy to multiply together two integers even if the integers are very large.  
But, given a large integer, there is no efficient way to factor it.  This is the 
basis of the RSA public key encryption system. 
 
Another mathematical problem involves logarithms.  Raising an integer to 
an exponent is relatively easy.  But, given an integer and a base, it can be 
hard to determine the exponent -- the logarithm.  This is the basis of the El 
Gamal public key encryption system. 
 
Not surprisingly, the calculations for both RSA and El Gamal involve 
modular arithmetic. 
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Was the Hill cipher ever used? 

 
Hill’s papers contributed two important ideas to cryptology.  First, they freed 
cryptology from encrypting just single letters and digraphs – they showed 
that encryption of blocks of more than two letters was possible.  And, Hill’s 
papers showed the close connection between cryptology and mathematics.  
This connection was emphasized by A.A. Albert in an address to the 
American Mathematical Society in 1941. 
 
But, was the Hill cipher ever used? 
 
Hill’s cipher is a nice application of matrices, but matrix multiplication is 
probably not easily done by soldiers who are in the trenches and watching 
artillery shells flying overhead. 
 
As a cipher to encrypt digraphs, Hill’s cipher is harder to use and weaker 
than the Playfair cipher.   
 
 … Hill’s cipher system itself saw almost no practical use … 
 

The real obstacle to practical use of the Hill system is, of course, it 
ponderousness.  Hill sought to minimize this by patenting a device 
that will encipher small polygrams (up to hexagrams).  It consists of a 
series of geared wheels connected by a sprocketed chain so that the 
rotation of one wheel will turn all the others, but the range of its keys 
appears to be limited.   
 
… the Hill system has served as a U.S. governmental cryptosystem in 
only one minor capacity – to encipher the three-letter groups of radio 
call-signs.  The Codebreakers by David Kahn 
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A view from one end of the Hill cipher machine. 
 
 

 
 

http://en.wikipedia.org/wiki/Hill_cipher 
 
 
 
The drawing on the next page is a side view of the Hill cipher machine and 
is taken from The Codebreakers by David Kahn. 
 
 
 

 39

http://en.wikipedia.org/wiki/Image:Hill%27s_message_protector_fig4_cropped.png


 
Exercises 
 
1. Multiply the following matrices, if possible. 
 

1a. . 
3 6 8
1 4 5

⎡ ⎤ ⎡
⎢ ⎥ ⎢−⎣ ⎦ ⎣

⎤
⎥
⎦

⎤
⎥
⎦

⎤
⎥
⎦

⎤
⎥
⎦

⎤
⎥
⎥
⎥⎦

 

1b. . 
3 6 2
1 4 3

−⎡ ⎤ ⎡
⎢ ⎥ ⎢−⎣ ⎦ ⎣

 

1c. . 
3 6 8 2
1 4 5 3

−⎡ ⎤ ⎡
⎢ ⎥ ⎢−⎣ ⎦ ⎣

 

1d. . 
3 6 2 8
1 4 3 5

−⎡ ⎤ ⎡
⎢ ⎥ ⎢−⎣ ⎦ ⎣

 

1e. . 
3 5 13 1
2 7 21 3
9 4 1 2

−⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

 

1f. 
3 5 13

3
2 7 21

5
9 4 1

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥ −⎣ ⎦⎢ ⎥⎣ ⎦

. 

 

1g. . 
1 0 11
0 1 23

−⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎣ ⎦ ⎣

⎤
⎥
⎦

⎤
⎥
⎦

 

1h. . 
0 0 12
0 0 7
⎡ ⎤ ⎡
⎢ ⎥ ⎢−⎣ ⎦ ⎣
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1i.  . 
1

5 3
2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

−

 

1j.  . 
3 5 13

2 2 7 21
9 4 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

1k.  . 
1 3 2 4 6 2
0 4 1 3 3 9
7 8 5 5 7 4

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

− −

− −

⎤
⎥
⎥
⎥⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

1l.  . 

3 0 2 2 4
4 6 1 1 1
1 5 6 3 1
9 7 4 0 3

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

−
− −

−
−
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2. Use a Hill cipher with key 
3 7
5 12
⎡ ⎤
⎢ ⎥
⎣ ⎦

 to encrypt the following message. 

 
 Agnes Driscoll worked for NSA. 
 
3. The following message was encrypted with a Hill cipher with key 

.  Decrypt the message. 
3 7
5 12
⎡
⎢
⎣ ⎦

⎤
⎥

 
ZKYZR  QHBDM   JMPVX   WLCGF   MIXGM   PKBUZ   
FHPCI  XZTIW 

 
 
4. Find the determinant of each of the following matrices modulo 26. 
 

4a. . 
5 2
7 3
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

4b. . 
5 12

15 25
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

4c. . 
20 2
5 4

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

4d. . 
5 8

12 3
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

4e.   
21 13
7 16

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
 
5. Which of the matrices in exercise 4 can be used as keys for a Hill cipher? 
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6. For each of the matrices in exercise 4 that can be used as keys for a Hill 
cipher, find the inverse modulo 26. 
 
 

7.  Use a Hill cipher with key 
2 7 19
0 5 8
1 3 7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  to encrypt the following 

message:  enigma. 
 
 

8.  Use a Hill cipher with key  

5 6 4 1
2 1 0 3
1 8 9 2
2 4 6 7

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

  to encyrpt the following 

message:  united states. 
 
 
9.  Find a  matrix that can be used as a key for a Hill cipher.  2 2×
 
 

10. What is special about the Hill cipher key 
5 8

10 21
⎡ ⎤
⎢ ⎥
⎣ ⎦

?  Does this make this 

matrix a good or bad choice for a key? 
 
 

11.  A message is first encrypted with a Hill cipher with key  and then 

encrypted again with key .  What is the resulting cipher? 

6 3
7 8
⎡
⎢
⎣ ⎦

⎤
⎥

⎤
⎥

3 2
8 5
⎡
⎢
⎣ ⎦

 
 
12.  Assume that an  matrix is the key for a Hill cipher.  If one letter of 
plaintext is changed, how many letters of ciphertext are likely to change? 

n n×
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13.  Assume that an  matrix is the key for a Hill cipher.  How many 
blocks of plaintext letters would we need to cryptanalyze the ciphertext?  
How many total letters of plaintext is this? 

n n×

 
 
14.  Known plaintext attack on the Hill cipher.  Find the key for the 
following ciphertext message that was enciphered with a Hill cipher. 
 

VRAAU  OTNLK  NJWVJ  QJXXY  BEOLW  CVRYK  FOYPQ  
TWVMP  ALUEA  ACWWE  GB 

 
The plaintext message begins “The Riddle.” 
 
 
15.  For the very (very) brave – a ciphertext attack on the Hill cipher. 
 

TZZOK  HMOTZ  MOINY  FTWCO  UWINH  CAGZH  AZXME  
ICZVH  ZOTWE  IUGGG  AETWE  ICZVH  ZOYKX  ZFAMW  
PGWQQ  JTZGT  YRFAI  KTWEI  HIQTN  ZAGVM  YKXZP  
GWQQJ  ZCHNE  ITZXG  IKTWE  IVUOZ  XUXBQ  DPTPS  
WQZHA  ZXMEI  CZVHZ  OYKXZ  FAMWP  GWQQJ  ELTZQ  
POZRF 

 
 
16.  Another ciphertext attack on the Hill cipher. 
 
xrqsx ibkfy lawcc jrohm ouyyl mrqgi ucscc ahakc 
zwuhg axroc bipwe zatqd eqrmh zgtmv ygoyq qlmqd 
kbpyd dqqcj glhka pbkae clxru cuhbg wtetx riymt 
ezdyd dhksj opgia piwzw fmzwa egpgi jpqxn oaady 
 
 
17.  You know that you are intercepting messages that are encrypted with a 

 Hill cipher.  You are able to trick one of the parties of the 
communications to send the plaintext digraphs az and za.  You are able to 
determine that az is enciphered as OJ and za is enciphered as YI.  
Determine the encryption matrix and the decryption matrix. 

2 2×
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18.  Consider the affine version of the Hill cipher.  First encrypt a message 

by multiplying by the matrix 
3 7
5 12
⎡ ⎤
⎢ ⎥
⎣ ⎦

 and then adding to the result the 

matrix .  Encrypt again by multiplying by the matrix 
6
20
⎡ ⎤
⎢ ⎥
⎣ ⎦

9 4
5 7
⎡ ⎤
⎢ ⎥
⎣ ⎦

 and 

adding the matrix .  What is the resulting cipher? 
3

17
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
 
19.  Again, consider the affine version of the Hill cipher.  Would re-
encrypting using this cryptosystem increase security? 
 
 
 
20.  Show that the affine version of the Hill cipher is not a linear 
transformation. 
 
 
21.  Would using a involutory key reduce the security of a Hill cipher? 
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