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The Hill cipher

The Playfair cipher is a polygraphic cipher; it enciphers more than one letter
at a time. Recall that the Playfair cipher enciphers digraphs — two-letter
blocks. An attack by frequency analysis would involve analyzing the
frequencies of the 26x26 =676 digraphs of plaintext. Complications also
occur when digraph frequencies are considered because sometimes common
plaintext digraphs are split between blocks. For example, when encrypting
the phrase another type the digraphs are an ot he rt yp e_, and the common
digraph th is split between blocks.

Frequency analysis would be even more complicated if we had a
cryptosystem that enciphered trigraphs — three-letter blocks. Frequency
analysis would involve knowing the frequencies of the 26x26x26 =17576
trigraphs.

Systems that enciphered even larger blocks would make cryptanalysis even
more difficult. There are 26x26x26x26 =456976 blocks of length 4,
26x 26%x26x26x 26 =11881376 blocks of length 5,

26%x26x26x 26x 26x 26 =308915776 blocks of length 6 ... .

If we had a cryptosystem that encipher blocks of length 100, there would be

314293064158293883017435778850162642 /2826699887624 75256374173
1753989959842010402346543259906970228933096407508161171919783
5869803511992549376

plaintext blocks.

But, there is no obvious way to extend the Playfair key square to three or
more dimensions.

... cryptographers ... tried to extend [Wheatstone’s Playfair cipher’s]
geometrical technique to trigraphic substitutions. Nearly all have
failed. Perhaps the best known effort was that of Count Luigi Gioppi
di Tikheim, who in 1897 produced a pseudo-trigrapphic system in



which two letters were monoalphabetically enciphered and the third
depended only on the second. Finally, about 1929, a young American
mathematician. Jack Levine, used six 5x5 squares to encipher
trigraphs in an ingenious extension of the Playfair. But he did not
disclose his method.

This was the situation when a 38-year-old assistant professor of
mathematics at Hunter College in New York published a seven-page
paper entitled “Cryptography in an Algebraic Alphabet” in The
American Mathematical Monthly for June-July 1929. He was Lester
S. Hill [1891? — 1961]. ... Later in the summer in which his paper on
algebraic cryptography appeared, he expanded the topic before the
American Mathematical Society in Boulder, Colorado. This lecture
was later published in The American Mathematical Monthly [March
1931] as “Concerning Certain Linear Transformation Apparatus of
Cryptography.” The Codebreakers by David Kahn

The Hill cipher is a cryptosystem that enciphers blocks. Any block size may
be selected, but it might be difficult to find good keys for enciphering large
blocks.



Block Ciphers

In [most of the ciphers that we have studied], changing one letter in the
plaintext changes exactly one letter in the ciphertext. In the [Caesar], affine,
and substitution ciphers, a given letter in the ciphertext always comes from
exactly one letter in the plaintext. In the Vigenére system, the use of blocks
of letters corresponding to the length of the key, made the frequency analysis
more difficult, but still possible since there was not interaction among the
various letters in each block. Block ciphers avoid these problems by
encrypting blocks of several letters or numbers simultaneously. A change of
one character in a plaintext block should change potentially all the characters
in the corresponding ciphertext block.

The Playfair cipher ... is a simple example of a block cipher, since it takes
two-letter blocks and encrypts them to two-letter blocks. A change of one
letter of a plaintext pair will always change at least one letter, and usually
both letters of the ciphertext pair. However, blocks of two letters are too
small to be secure, and frequency analysis, for example, is usually
successful.

The standard way of using a block cipher is to convert blocks of plaintext to
blocks of ciphertext, independently and one at a time. This is called
electronic code book (ECB) mode. However, there are ways to use
feedback from the blocks of ciphertext in the encryption of subsequent
blocks of plaintext. This leads to the cipher block chaining (CBC) mode and

cipher feedback (CFB) [and other modes] of operation. introduction to
Cryptography and Coding Theory, Wade Trappe and Lawrence C. Washington.



Matrices
The Hill cipher is usually taught by means of matrices.
A matrix is just a rectangular array of numbers. For example,

Lo 1 2 17 ; 0 6 -8 23 65
{3 7] 43 0 9 ,M,and 9 76 1 98 -10
- 7 23 9 11 7 34 72 1

are all matrices.
The dimension of a matrix is given as
number of rows x number of columns.
For the four matrices given above, the dimensions are 2x2, 3x3, 2x1, and
3;55 :,respectively. The dimensions are read as “2 by 2, 3by 3,2 by 1, and 3

If the number of rows equals the number of columns, the matrix is said to be
a square matrix. The first two matrices above are square matrices.

If the matrix has only one column, the matrix is said to be a column matrix.
The third matrix above is a column matrix.

We will deal exclusively with square and column matrices.

Matrices can be added, subtracted, multiplied, and in some cases divided just
like numbers. The fact that an array of numbers can be treated as a single
number is what permits the theory of matrices to extend cryptographic
techniques to higher dimensions.

Multiplication by Square Matrices

One origin of matrices is the solution of systems of linear equations, and the
multiplication of matrices reflects that use.



For example, consider this system of two linear equations in two variables x
andy. a, b, c, d, u, and v represent constants (i.e., numbers).

ax+by=u
cx+dy=v

This system of equations can be represented by one matrix equation

a bjx| |u

c dlly| |v]|
The square matrix is called the coefficient matrix (a, b, ¢, and d are the
coefficients of the variables x and y). There are two column matrices — one
consisting of the two variables x and y and the other of the two constants that
appear on the right hand side of the system u and v.
For the moment, we will only consider matrix multiplication of the form

square matrix x column matrix

Such a multiplication is only defined if the number of columns of the square
matrix equals the number of rows of the column matrix.

The system of equations gives us the pattern for multiplication.

a b x| |ax+by
c d|ly| |cx+dy
The top entry of the product is calculated by, first, taking the entries of the

first row of the square matrix and multiplying them "term-by-term" with the
entries of the column matrix and then adding those products.

The lower entry of the product is calculated by, first, taking the entries of the
second row of the square matrix and multiplying them "term-by-term" with
the entries of the column matrix and then adding those products.



3 718 59
For example, =
5 12||5| |100

3x8 + 7x5 59
5x8 + 12x5 = 100

3 7118 68
and =
R
3x18 + 7x2 68
5x18 + 12x2 = 114

Multiplication is defined similarly for higher dimension square and column
matrices. For example, for 3x3 matrices

c|[ x| [ax+by+cz
dx+ey+ fz |.
i ]l z] [gx+hy+iz

Q o o
> o T
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1 0 7|5 89 |
Forexample, | -3 4 9| -3|=| 81
12 -7 5|12 141

Ix5 + O0x-3 + 7x12 = 89
-3x5 + 4x-3 + 9x12 = 81
12x5 + —7x-3 + 5x12 = 141

Etc.

To multiply two square matrices of the same dimension, we just do the
multiplication one column at a time.

3 7|8 18 59 68
For example, = :
5 12||5 2 100 114






Hill's Cipher

The situation with regard to the Hill cipher is much the same as that with
regard to the Vigenere cipher. What is usually referred to as the Hill cipher
Is only one of the methods that Hill discusses, and even then it is a weakened
version. We will comment more about this later, but first we will consider
what is usually called the Hill cipher.

The Hill cipher uses matrices to transform blocks of plaintext letters into
blocks of ciphertext. Here is an example that encrypts digraphs.

Consider the following message:
Herbert Yardley wrote The American Black Chamber.
Break the message into digraphs:

he rb er ty ar dl ey wr ot et he am er ic an bl ac kc
ha mb er

(If the message did not consist of an even number of letters, we would place
a null at the end.)

Now convert each pair of letters to its number-pair equivalent. We will use
ourusuala=01, ...,z = 26.

85 182 518 2025 118 412 525 2318 1520 520 85
113 518 93 114 212 13 113 81 132 518

3 7
Now we encrypt each pair using the key which is the matrix {5 12]

Make the first pair of numbers into a column vector (h (8) e (5)), and
multiply that matrix by the key.

s o5l



Of course, we need our result to be mod 26

59 7
= mod 26
100 22

The ciphertext is G (7) v (22).

For the next pair r (18) b (2),

5 o2l

and 16 corresponds to P and 10 corresponds to J. Etc.

Do this for every pair and obtain

GVPJKGAJYMRHHMMSCCYEGVPEKGVCWQLXXOBMEZAKKG
Encryption is like using a multiplicative cipher except that multiplying by a
matrix allows us to encipher more than one letter at a time.
Decryption
Of course, we need a procedure for decrypting this. However, just like for
the multiplicative ciphers, we cannot use all matrices as keys because we

cannot undo the multiplication for all matrices.

To go from plaintext to ciphertext in the first example above we did

o o]

Now we want to undo this; we want to find a matrix so that

7 o))l



I.e, we want to find a matrix 7 7} so that

?2 213 7 8
We want to leave unchanged.
? ?25 12 5

Matrix Inverse

: : : . 3 7 .
The matrix we are looking for is called the inverse of {5 12} and is

3 77"
denoted .
5 12

d -b
bT™ ~ _
It is easy to verify that {a } _|ad-bc ad-bc :
c d —C a
ad —bc ad -hc
. d -b
bl b _ _ b 1 0
The product 2 2 _|ad-bc ad-bc) 4 = which
c d c d —C a c d 0 1
ad —bc ad -bhc

Is called the identity matrix because the effect of multiplying a matrix by it
Is to leave the other matrix unchanged. (It is like multiplying a number by
1)

Notice that to calculate the inverse of the matrix {2 b} we must be able to

d
divide by ad — bc; i.e., we must have a multiplicative inverse for ad — bc.

10



Because we are working modulo 26, that means that ad — bc must be one of
1,3,5,7,9, 11, 15,17, 19, 21, 23, or 25. Otherwise, the multiplication
cannot be undone; encryption cannot be undone.

Determinant

ad — bc is called the determinant of {:

a 2x2 is just the product down the upper left to lower right diagonal minus
the product down the upper right to lower left diagonal. For a matrix to have
an inverse modulo 26, the determinant of the matrix mustbe 1, 3,5, 7, 9, 11,
15,17, 19, 21, 23, or 25 modulo 26. To be able to undo multiplication by a
matrix mod 26, the determinant of the matrix must be 1, 3,5, 7, 9, 11, 15,
17,19, 21, 23, or 25 modulo 26. For a matrix to be a key for a Hill cipher,
the determinant of the matrix must be 1, 3,5, 7, 9, 11, 15, 17, 19, 21, 23, or
25 modulo 26.

ﬂ Notice that the determinant of

3 7
The determinant of {5 12} IS 3x12-7x5=1=1mod26. So, the inverse

3 77.[3 77 [12 -7 [12 19 . .
of IS = = mod26. This is a special
5 12 5 12 -5 3 21 3

case because the determinant is 1.

Here is an example of finding the inverse of a 2x 2 matrix when the
determinant is not 1.

4
The determinant of E 7} ISOx7—-4x5=63-20=43=17mo0d 26.

Because 17 has a multiplicative inverse modulo 26, this matrix has an
inverse. The inverse of the matrix is

i
1r 17 mod 26 .
=5 9
17 17

11



Dividing by 17 modulo 26 is the same as multiplying by the multiplicative
inverse of 17 modulo 26. Recall that the multiplicative inverse of 17 is 23
modulo 26. So, the inverse of the matrix is

7 -4
17 17 7x23 —4x23
1717 mod 26 = 8 8 mod 26
—_5 g —5%x23 9x23
17 17
161 -92 5 12
= mod 26 = mod 26
-115 207 15 25

Calculating the determinant of an nxn matrix with n > 2 is more difficult.
The pattern used for a 2x2 matrix is a very special case. Usually
calculators and computer algebra systems are able to calculate determinants.
Similarly, calculating the inverse of an nxn matrix with n > 2 differs from

calculating the inverse of a 2x2 matrix. Again, usually calculators and
computer algebra systems are able to calculate inverses.

Decryption

We return to the earlier example. Encrypting

Herbert Yardley wrote The American Black Chamber.

3 7
using the key L 12} resulted in the ciphertext

GVPJKGAJYMRHHMMSCCYEGVPEKGVCWQLXXOBMEZAKKG

12 19

We use the inverse of the key { 21 3

} to decrypt Gv, which is the first

digraph of the ciphertext.

G orresponds to 7, and v corresponds to 22.

12



ER M

In a similar manner, we can decrypt the remainder of the ciphertext.

h (8) e (5).

13



Hill ciphers that encipher larger blocks

Notice that the multiplicative cipher is just the 1x1 case of the Hill cipher;
individual letters are enciphered one at a time.

2x2 invertible matrices modulo 26 (an invertible matrix is a matrix that has
an inverse) can be used to encipher digraphs. 3x 3 invertible matrices
modulo 26 can be used to encipher trigaphs. 4 x4 invertible matrices
modulo 26 can be used to encipher blocks of 4 letters. Etc.

Finding keys is pretty much a trial and error process. That means that it can
be very difficult to find a key for encrypting large blocks.

Ciphertext Attack

Here is a ciphertext that is known to be enciphered with a Hill cipher.

wbvec 1txwb mphsr hytyw gmqdq egxyf yncta zdkyi eenin zkygh
yntgb pbpkl azfgy ikkru drzcp aaaci fueqg ywbuu urozm vfgmy
vkwwo zbpyn ezsbg jfynz yvmeo zctiu ghfgu aekds ayicc tkrus
xgbpz cufve lvsjg lklls vefyt onmdk

The first thing to be determined would be the size of the blocks. If the key
were an nxn matrix, then n must divide the number of letters in the
ciphertext. This ciphertext has 180 letters. There are many possibilities for
n, but let us assume that it was encrypted using a 2x2 key. (That’s a really
good assumption.)

Because such a key encrypts digraphs, we might begin by looking at digraph
frequencies.

14



Here are the digraphs that appear more than once and their frequencies:

Digraph Frequency

bp
yn
ct
Tg
Ty
0z
ve
wb
yi
ZC
aa
az
ci
dk
gb
gh
gm
ay
hy
kl
kr
Ky
nz
ru
uu
yt
yVv
yw

NNNNNNNDNNNNDNNNNNNNDNNNNNOOWOWWWWWwsHS

If we’re lucky the most common plaintext digraph €th will correspond to
(one of) the most common ciphertext digraph(s). BP and YN each appear 4
times in the ciphertext. Let’s assume that ciphertext BP corresponds to
plaintext €h. (Another really good assumption.)

We could try to determine the key or the key inverse. Because we are trying
to determine the plaintext, let’s try to directly determine the key inverse. We

want to find a 2x2 matrix {e f} that is the inverse of the key. If we are

h
correct that B(2)P (16) corresponds to €t (20)h(8), then

; ke

15



This corresponds to two linear equations:

2e + 16f = 20
29 + 16h = 8

Because this Hill cipher (we assume) encrypts digraphs, the key inverse is a
2x2matrix. The key inverse has 22 =4 entries e, f, g, and h that must be
determined. We would like to have four equations — two involving e and f
and two involving g and h.

If we knew another plaintext/ciphertext digraph correspondence, we would
have the other two equations that we need. Perhaps, the next most common
ciphertext digraph YN corresponds to the next most common plaintext
digraph he. (But, it doesn’t.)

We could try assuming that YN corresponds to another common digraph, but
here is another technique.

The most common letter that follows plaintext th is e. We might examine
the digraphs that follow BP in the ciphertext and assume that the next
ciphertext digraph corresponds to plaintext e . We notice that we have
BP KL, BP BP,BP YN, and BP ZC. If we are correct that BP
corresponds to th, the second pair of digraphs corresponds to plaintext th
th. In each of the other cases, we will assume that the two ciphertext
digraphs correspond to th e_. Making this assumption, we should be
correct more than half the time.

So, if KL correspondsto e, B f}[ll :{ﬂ which yields the equation

11e+12f =5. If YN corresponds to e_, S ”Eﬂ :[ﬂ which yields the

equation 25e+14f =5. If ZC corresponds to e_, B ”Eﬂz[ﬂ which
yields the equation 26e+3f =5,

Each of these can be solved simultaneously with,12e+16 f =20which was
obtained by assuming that BP corresponds to th. All of the solving,

16



however, is to be done modulo 26. We may use whatever techniques we
know for solving systems of linear equations provided that we divide only
when division is possible — we can divide by only 1, 3, 5, 7, 9, 11, 15, 17,
19, 21, 23, and 25. We will use Mathematica to solve the equations.

Solve[23e + 2F == 9 && 22e + 5F == 13 && Modulus == 26,
{e, f}]
{{Modullus - 26, e— 1, - 19}
Solve[23g + 2h = 14 && 229 + 5h == 1 && Modulus == 26,
{g, h}]
{{Modulus - 26, g- 20, h- 11})
Solve[2e + 16 F =20 & 1l1e + 12F == 5 & Modulus == 26,
{e, f}1
Solve::svars : Equations may not
give solutions for all "solve" variables.
{{Modullus > 26, e~ 1, f- 6}, {Modulus - 26, e > 1, ¥- 19}
Solve[2e + 16 F =20 & 25e + 14T == 5 & Modulus == 26,
{e, }1
Solve::svars : Equations may not
give solutions for all "'solve™ variables.
{{Modullus - 26, e~ 1, f- 6}, {Modulus - 26, e~ 1, f-19}}
Solve[2e + 16T =20 & 26e + 3F == 5 && Modulus == 26,
{e, B
Solve::svars : Equations may not

give solutions for all "solve"™ variables.
{{Modullus- 26, e-» 1, f- 19}, {Modulus - 26, e - 14, ¥ 19}}

Each system of congruences has two solutions modulo 26. e=1and f=19
Is common to all of the pairs of solutions. That would happen if in each of
these three cases th were followed by e . Let us assume that is the case.
(That’s another really good assumption.) We could later try the other
possibilities if needed.

So, we believe that the key inverse is B 19]

17



We have one more congruence: 2g +16h=8mod26. It is possible to solve a
congruence of the form ax+by =cmodn provided that the greatest common

divisor of a, b, and n also divides c. In our case, the greatest common
divisor of a=2, b=16, and n=26 is 2 which does divide c=8. It is necessary
to reduce the modulus; remove the factor of 2 to get g+8h=4mod13. Then

rearrange the terms to get g =4—-8hmod13. Modulo 13, the possible values

ofhare0,1,2,3,4,5,6,7,8,9, 10, 11, and 12. We substitute these values
for h one at a time and solve for g. It’s easy, but again we show
Mathematica output.

Solve[g == 4 - 8x0 && Modulus == 13, Q]

{{Modulus - 13, g- 4}}

Solve[g == 4 - 8x1 & Modulus == 13, Q]

{{Modulus - 13, g- 9}}

Solve[g == 4 - 8x2 & Modulus == 13, Q]

{{Modulus - 13, g- 1}}

Solve[g == 4 - 8%3 & Modulus == 13, Q]

{{Modulus - 13, g- 6}}

Solve[g = 4 - 8x4 & Modulus == 13, (]

{{Modulus - 13, g- 11}

Solve[g = 4 - 85 && Modulus == 13, Q]

{{Modullus - 13, g- 3}}

Solve[g == 4 - 8%x6 & Modulus == 13, Q]

{{Modulus - 13, g- 8}}

Solve[g == 4 - 8x7 & Modulus == 13, Q]

{{Modulus - 13, g~ 0}}

Solve[g == 4 - 8%x8 && Modulus == 13, Q]

{{Modulus - 13, g- 5}}

Solve[g == 4 - 8%x9 & Modulus == 13, Q]

{{Modulus - 13, g- 103}

Solve[g == 4 - 8%10 & Modulus == 13, Q]
{{Modulus - 13, g- 2}}

Solve[g = 4 - 8«11 && Modulus == 13, Q]
{{Modulus - 13, g- 7}}

Solve[g == 4 - 8«12 && Modulus == 13, Q]
{ {Modullus - 13, g- 12}}

18



For example, if h = 3, g = 6 mod 13. But, we are ultimately interested in
what happens modulo 26. 6 and 6 + 13 = 19 are congruent mod 13, but they
are not congruent mod 26. So, each solution mod 13 becomes two solutions
mod 26.

mod 13 g mod 26
4,17
9,22
1,10
6, 19
11, 24
3,22
8,21
0, 13
5,18
10, 23
2,15
7,20
12, 25

O©CoOoO~NO Ol WNPEFE O
-

o

10
11
12

P ~NNNP00ITOO0OWREFRORF O R~CQ

N

The determinant of the key inverse must be one of 1, 3,5, 7, 9, 11, 15, 17,

19, 21, 23, or 25 mod 26. So, try each of these pairs of g and h in E 1:}

and calculate the determinant mod 26. Again, we use Mathematica.

Mod[Det[{{1, 19}, {0, 4}}1, 26]
4

Mod[Det[{{1, 19}, {0, 17}}], 26]
17

Mod[Detr[{{1, 19}, {1, 93}1, 26]
16

Mod[Det[{{1, 19}, {1, 22}}], 26]
3

Mod[Det[{{1, 19}, {2, 1}}1, 26]
15

Mod[Det[{{1, 19}, {2, 10}}], 26]
24

Mod[Det[{{1, 19}, {3, 6}}1, 26]
1

19



Mod[Det[{{1,
14
Mod[Det[{{1,
13
Mod[Det[{{1,
0
Mod[Det[{{1,
12
Mod[Det[{{1,
)
Mod[Det[{{1,
24
Mod[Det[{{1,
11
Mod[Det[{{1,
23
Mod[Det[{{1,
10
Mod[Det[{{1,
9
Mod[Det[{{1,
22
Mod[Det[{{1,
21
Mod[Det[{{1,
8
Mod[Det[{{1,
20
Mod[Det[{{1,
.
Mod[Det[{{1,
6
Mod[Det[{{1,
19
Mod[Det[{{1,
18
Mod[Det[{{1,
)

19y,
19y,
19y,
193,
19y,
193,
19y,
19},
19y,
19},
19y,
19y,
19y,
19y,
19y,
19y,
19},
19},

193,

{10,
{10,
{11,
{11,
{12,

{12’

19331, 26]
11331, 26]
24131, 26]
3111, 26]
22}31, 26]
8111, 26]
21331, 26]
0131, 26]
13131, 26]
S}}1, 26]
18311, 26]
10331, 26]
23}31, 261
2}}1, 26]
15331, 26]
7}}1, 26]
20311, 26]
12y31, 26]

25}}1, 26]

20



The possible ke invers.esare_1 19] [1 19] [1 19| [1 19]
p y 7 002 1|1 2)]s 3

119] [1 19] [1 19] [1 19] [1 19] [1 19] [1 19]
3 5|"|22 521 6]'|0 7| |5 8] [10 9| [15 10]

(1 019] 119
20 1177 |25 12]

We have reduced the problem to checking 13 possible key inverses. We try

to decrypt the ciphertext with each possible inverse. { L Is the correct

20 11}
key inverse.

Known plaintext attack

The cryptanalysis that was done above is a ciphertext only attack — only
ciphertext was known. It can be difficult to cryptanalyze a Hill cipher using
a ciphertext only attack, but it is easy to break using a known plaintext
attack. A known plaintext attack means that we know a bit of ciphertext
and the corresponding plaintext — a crib. This is not an unusual situation.
Often messages have stereotypical beginnings (e.g., to ..., dear ...) or
stereotypical endings (e.g, stop) or sometimes it is possible (knowing the
sender and receiver or knowing what is likely to be the content of the
message) to guess a portion of a message.

Fora 2x2 Hill cipher, if we know two ciphertext digraphs and the
corresponding plaintext digraphs, we can easily determine the key or the key
inverse. Assume that we know that the plaintext of our ciphertext message
that begins WBVE is inma. Because WB correspondsto In

e 23] |9 e f|22| (13
{g h}{z}_{m},and because VE corresponds to ma {g h}{S}{l}

This results in two sets of linear congruences modulo 26:

23 + 2f = 9
22¢ + 5f = 13

21



and

23g + 2h = 14
22g + 5h = 1

We solve the systems modulo 26 using Mathematica.

Solve[23e + 2F == 9 && 22e + 5F == 13 && Modulus == 26,
{e, f}]

{{Modullus - 26, e— 1, - 19}

Solve[23g + 2h = 14 && 229 + 5h == 1 && Modulus == 26,

{9, h}]
{{Modulus - 26, g- 20, h- 11})

Again (with a lot less assuming) we find that the key inverse is { 210 ﬁ} -

Two More Examples of a Known Plaintext Attack

Here are two examples of cryptanalyzing a Hill cipher with a known
plaintext attack. Each example is done by hand — without using
Mathematica. In example one, there is no need to reduce the modulus; in
example two the modulus must be reduced.

Example one:

Ciphertext: FAGQQ ILABQ VLJCY QULAU STYTO JSDJJ
PODFS ZNLUH KMOW

We are assuming that this message was encrypted using a 2x 2 Hill cipher
and that we have a crib. We believe that the message begins “a crib.”

ac ri
[1, 3] | [18, 9]
[6,1] | [7,17]

FA GQ

22



We could either solve for the key or the key inverse. To solve for the key,
we would solve

and
a bjl18| |7
c d|l 9] |17
To solve for the key inverse, we would solve

¢ oM
¢

and

We will solve for the key.

a b1l 6 . )
[ M }: L} represents two linear equatlons:

c dj3
a +3b = 6
c +3d =
a bl[18] [7
and = represents
c df|| 9] |17
18a +%b = 7
18c +9d = 17

Now we solve the following linear congruences mod 26.

23



a +3b = and c +3d =1
18a +9%b = 7 18c +9d = 17
. . a 3b = 6.
We will solve the pair of congruences N first.
18a +9b = 7

To eliminate an unknown, multiply congruence 1 by 3

3a +9b = 18
18a +9b = 7

and subtract congruence 2 from congruence 1.
—15a = 11

Modulo 26, -15 is 11.

1la = 11
Divide by 11 to obtain a.
a=1

Now substitute this in congruence 1.
1+3b=6
3b=5

The multiplicative inverse of 3 is 9 modulo 26.
b=9x3b=9x5=45=19mod 26

So, the key looks like
1 19
c d

24



C ad =1
Now solve the system i
18c +9d = 17
3c +9d = 3
18¢c +9d = 17
15c =14

Cc=7x15¢c=7x%x14=98=20mod 26
20+3d =1
3d =-19=7mod 26

d =9x3d =9x7=63=11mod 26

The key is { . 19}.
20 11

Example two:

We are assuming that we have a ciphertext message was that encrypted
using a 2x 2 Hill cipher and that we have a crib. We believe that ciphertext
UKJN corresponds to plaintext word.

wo rd
[23,15] | [18, 4]
[21, 11] | [10, 14]

UK JN

The two systems of congruences are:

11

23a +15b
14

21 23c +15d
and
18a +4b

10 18c +4d
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We will solve the system on the left.

To eliminate an unknown, multiply congruence number 1 by 4 and
congruence number 2 by 15 both modulo 26.

6
20

1l4a +8b
10a +8b

Subtract the second congruence from the first.
4a =-14=12mod 26
This congruence corresponds to the equation 4a=12+26k, 4ais 12 plus a
multiple of 26. Notice that 2 divides the coefficient of a, the constant 12,
and the modulus 26. We reduce the modulus by dividing by 2.
2a=6+13k
and we have a congruence modulo 13.

2a=6mod13

This congruence does not have a common factor among the coefficient, the
constant, and the modulus.

Here are the multiplicative inverses of the integers modulo 13:

Number 123 45 6 7 8 9 10 11 12
Multiplicative inverse 17910811 2 5 3 4 6 12

To find a, multiply 2a=6mod13 by the multiplicative inverse of 2, which is
7.

a=7x2a=7x6=42=3mod13

So, a is 3 modulo 13. But, there are two integers mod 26 that are 3 mod 13,
namely, 3and 3 + 13 = 16. So, there are two possible values for a.

Ifa=3,
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18x3=4b=10

54+4b =10

2+4b=10

4b =8mod 26

2b =4mod13

b=7x2b=7x4=26=2mod13
So, b=2 or b = 2+13 = 15 modulo 16.
If a=16,

18x16+4b =10

288+4b =10

2+4b=10
which yields the same solutions for b.

Here are the 4 possible solutions for a and b.

a=3 b=2

a=3 b=15

a=16 b=2

a=16 b=15
23c +156d = 11
Now solve )
18c +4d = 14

l4a +8b = 18
10a +8b = 2

4c =16 mod 26
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2c =8mod13

c=7x2c=14c=7x8=56=4mod13
So,c=4orc=4+13=17 modulo 26.
Ifc=4,

18x4+4d =14

20+4d =14

4d =-6=20mod 26

2d =10mod13

d=7x2d =7x10=5mod13
So,d=50rd=5 + 13 =18 modulo 26.
Ifc=17,

18x17+4d =14

20+4d =14
and we are led to the same solutions for d.

c=4 d=5
c=4 d=18
c=17 d=5
c=17 d=18

There are 16 possible 2x2 matrices that could be the key.
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3 2 3 2 3 2] [3 2]
{4 5} {4 18} L? 5} 17 18]
3 15 3 15 3 15| [3 15]
{4 5} {4 18} {17 5} 17 18]
16 2] [16 2 16 2] [16 2]
{4 5} {4 18} L? 5} 17 18]
16 15] [16 15| [16 15] [16 15]
[4 5} {4 18} L? 5} 17 18]

First, calculate the determinant of each. Any matrix that does not have an
invertible determinant modulo 26 (i.e., the determinant is not one of 1, 3, 5,
7,9,11, 15, 17, 19, 21, 23, 25 modulo 26) can be eliminated. Then try to
decipher the messages with each of the remaining messages. The matrix that
yields plaintext is the key.

Two more examples appear in an appendix.

To break a Hill cipher with a 2x 2 key requires determining four entries —
the four entries of the key or the four entries of the key inverse. We can do
that if we know the correspondence between plaintext and ciphertext for two
digraphs because the correspondences will permit us to set up two systems
of congruences — each system has two congruences of two unknowns.

To break a Hill cipher with a nx n key requires determining n* entries — the

nentries of the key or the n®entries of the key inverse. We can do that if
we know the correspondence between plaintext and ciphertext for n n-graphs
because the correspondences will permit us to set up n systems of
congruences — each system has n congruences of n unknowns.

The reason that we can solve these systems of congruences is because they
are linear. The solutions of linear systems of equations of congruences is
well-understood.

Linear Transformations

What do we mean by linear?
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First, there are two more operations on matrices that we will briefly
consider.

Adding two matrices of the same size means to add their corresponding

entries; e.g {3 _9}{5 6}{8 _3} In particular, for a column matrix
Y752 -3 0| |2 2 ’ ’

2 N 5| |-3
9 (12| |21|
Multiplying a matrix by a number means to multiply each entry of the matrix

_ 5 -2| (15 -6 :
by that number; e.g., 3{7 3 }{21 6 } In particular, for a column

matrix, —4{_57} :[_2280} . This multiplication is called scalar multiplication

because the entries of the matrix are scaled.

A transformation T is said to be a linear transformation if it satisfies the
following two properties:

T(x+y) = T(X)+T(y)
T(ax) = aT (x)

where a is a number.

Multiplication of a column matrix by a square matrix is seen to be a linear
transformation. For example,

200 D 2l
HLHERH

Linearity also holds when the operations are done modulo 26; so, the
encryption process of a Hill cipher is a linear transformation.
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Mathematicians like linear transformations because mathematicians
understand a great deal about linear transformations. Cryptographers do not
like linear transformations because mathematicians understand a great deal
about linear transformations.

Because the Hill cipher relies on matrix multiplication, which is a linear
transformation, the Hill cipher can be cryptanalyzed. In fact, a known
plaintext attack requires knowing only the correspondence between plaintext
and ciphertext for two digraphs (between plaintext and ciphertext strings of
length 4) when the key is a 2x 2 matrix and requires knowing only the
correspondence between plaintext and ciphertext for n n-graphs (between
plaintext and ciphertext strings of length n?) when the key is an nxn
matrix. That amount of information determines a system of linear
congruences that can be solved, and the entries of the key or of the key
inverse can be determined. It might not be a pleasant process, but it can be
done. (What was said above is not quite true. We are claiming that a system
of n linear congruences in n unknowns has a solution. Such a system might
not have a solution; it might be indeterminant. What is needed for a solution
Is that that system of congruences be independent — that there not be
redundancy in the system. For example, when using a Hill cipher with a

2x 2 key, if the plaintext-ciphertext correspondence that we knew were
acac = FAFA, we would not have enough information to determine the key.
If there is redundancy, usually using just “a few more” plaintext-ciphertext
correspondences eliminates the redundancy.)

Consider the 2x 2 Hill cipher. If we know only two correspondences
between plaintext and ciphertext digraphs, we can determine the key because
the encryption process is linear. Consider the Playfair cipher. If we know
only two correspondences between plaintext and ciphertext digraphs, it is
unlikely that we could determine the key because the Playfair cipher is non-
linear.

Cryptographers should attempt to avoid linearity when constructing

cryptosystems.

Introducing Non-linearity into a Hill Cipher
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Hill’s papers contain techniques that are much more secure than the
technique that we have called the Hill cipher. Hill’s papers include ciphers
that are nonlinear.

One nonlinear technique used by Hill is to do a (nonlinear) simple
substitution cipher — a permutation -- prior to the matrix multiplication. Hill
uses the following substitutions:

a b c de f gh i j k I mno
5 232 2010158 4 18250 16 137 3 1 196 12 24 21 17 14 22 11 9

For example, th becomes 24 4 and then
3 T 24] |22
5 12| 4 | |12

Composing nonlinear substitution and linear mixing is the basis of what are
called Feistel ciphers. DES the Data Encryption Standard (which was the
standard for data encryption from 1977 until the selection of AES the
Advanced Encryption Standard in 2001) is a Feistel cipher.

V (22) L (12).

Another nonlinear technique used by Hill is similar to what we did when we
went from the multiplicative cipher (C = mp) to the affine cipher (C=mp +
b) by adding a shift. Multiplicative ciphers are linear ciphers; affine ciphers
are not linear ciphers. Hill adds a shift to what we have called the Hill
cipher. For example, (usinga=1, ..., z =26) to encrypt h (8) e (5)

s 123"

Hill includes further nonlinear generalizations.

M (13) P (16).
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Size of the Keyspace

Multiplicative ciphers have a very small keyspace; the key must be one of 1,
3,5,7,9, 11, 15, 17, 19, 21, 23, 25. How large is the keyspace for a Hill
cipher?

There are 26* = 456976 2 x 2matrices having entries modulo 26; i.e., each
entry must be 0, 1, ..., 25. But, recall that for a matrix to be usable as a key
for a Hill cipher the matrix must have an inverse. How many of these 2 x 2
matrices are invertible? This is answered for nxn matrices in “On the
Keyspace of the Hill Cipher” by Overby, Traves, and Wojdylo in
Cryptologia, January 2005; there are 157248 possible 2x 2 keys.

Hill ciphers are asymmetric ciphers: one key is used for encryption and a
second key (the key inverse) is used for decryption. Of course, anyone who
knows some elementary linear algebra can construct the key inverse from
the key, but the encryption and decryption keys are not the same — except in
certain cases. Hill, in his second paper, discusses using involutory matrices
(matrices that are self-inverse) as keys.

0 1 25
4 22 4 |isinvolutory.
3 22 4

Using involutory keys would make encryption and decryption completely
symmetric, but this significantly restricts the number of keys (see the
previously cited article in Cryptologia.)

Diffusion and Confusion

Two properties are often considered when discussing the strength of modern
block ciphers.

Claude Shannon, in one of the fundamental papers on the theoretical

foundations of cryptography [“Communication theory of secrecy
systems,” Bell Systems Technical Journal 28 (1949), 656 — 715], gave
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two properties that a good cryptosystem should have to hinder
statistical analysis: diffusion and confusion.

Diffusion means that if we change a character of the plaintext, then
several characters of the ciphertext should change, and similarly, if we
change a character of the ciphertext, then several characters of the
plaintext should change. We saw that the Hill cipher has this
property. This means that frequency statistics of letters, [digraphs],
etc. in the plaintext are diffused over several characters in the
ciphertext, which means that much more ciphertext is needed to do a
meaningful statistical attack.

Confusion means that the key does not related in a simple way to the
ciphertext. In particular, each character of the ciphertext should
depend on several parts of the key. For example, suppose we have a
Hill cipher with an nxn matrix, and suppose we have a plaintext-
ciphertext pair of length n? with which we are able to solve for the
encryption matrix. If we change one character of the ciphertext, one
column of the matrix can change completely. Of course, it would be
more desirable to have the entire key change. When a situation like
that happens, the cryptanalyst would probably need to solve for the
entire key simultaneously, rather than piece by piece.

The Vigenere and substitution ciphers do not have the properties of
diffusion and confusion, which is why they are so susceptible to

frequency analysis. Introduction to Cryptography and Coding Theory, Wade Trappe and
Lawrence C. Washington.

Keys containing lots of zero entries weaken diffusion.
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Hill ciphers with nxn keys form a group

Encrypting with a Hill cipher and re-encrypting with another key of the
same size does not improve security because the Hill ciphers with nxn keys
form a group.

For example, if we encrypted digraphs with a Hill cipher using the key

E 172} (which has determinant 1 modulo 26) and then encrypted that

ciphertext using a Hill cipher with key E ﬂ (which has determinant 17

modulo 26), the result would be the same as encrypting once with the

9 4|3 7 47 111| |21 7 .
key{5 7}{5 12}{50 119}—{24 15} modulo 26. Because “the

determinant of a product is the product of the determinants” (even modulo

21 7} is17x1=17 modulo 26 - so. it is a valid Hill

26), the determinant of [ 24 15

cipher key.

The point is, you have only one shot at using a Hill cipher — re-encrypting
does not improve security.

Public key cryptology

In 1976 a paper appeared that would revolutionize cryptology. The paper
was by Whitfield Diffie and Martin Hellman. Their paper "New Directions
in Cryptography" was published in the IEEE Transactions on Information
Theory (vol. 22, no. 6, November 1976). Diffie and Hellman were
concerned with the key distribution problem that would be created by
increased use of communications networks like the internet (which
developed later). The problem is: How do you distribute secret keys to
people with whom you have not communicated before? Using classical
cryptology, (essentially) the same key is used to encrypt and to decrypt
messages. If you know how to encrypt, then you know how to decrypt. The
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usual way to distribute secret keys was by courier. Imagine that you’ve
never purchased from Amazon.com before, but you just found a book on
their website that you’d like to order. You need to send credit card
information to Amazon, but you’d like that information to be encrypted.
What do you do? You don’t want to have to contact Amazon and wait until
they have a courier show up at your door with a secret key. Diffie and
Hellman suggested a solution.

Classical cryptology uses essentially the same key for encryption and
decryption. Such a key is called a symmetric key. Diffie and Hellman
suggested that there be two keys — a public key which would be used for
encryption and a private key which would be used for decryption.
Communication would be a one-way process. The sender would look up the
receiver’s public key and use that key to encrypt the message. Upon
receiving the message, the receiver would use the private key to decrypt it.
The important point, of course, is that knowledge of the encryption key
should yield no information about the decryption key. This is called public
key or asymmetric key cryptography.

Public key cryptography solves the key distribution problem. If you want to
send your credit card number to Amazon, you (actually your web browser
does this) look up Amazon’s public key and use that key to encrypt your
credit card number. There is no need to keep the encryption key secret —
everyone may know it.

But, is such a scheme possible? Is it possible to encyrpt with one key and
decrypt with another and design the keys in such a way that knowing the
encryption key does not provide enough information to construct the
decryption key?

In their paper, Diffie and Hellman did not describe such an encryption
system, but they suggested that one was needed. Various systems
developed, and today they dominate much of cryptology. These public key
systems seem to be characterized by having the encryption key being a
rather easy calculation — but a calculation that is not possible to undo
without additional information (which the receiver keeps private).

The Hill cipher suggests how such a method might work. Now, the Hill

cipher is not a public key encryption scheme because anyone who knows the
encryption matrix can, using elementary linear algebra, calculate the
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decryption matrix — the key inverse. But, assume that it were not known
how to calculate the inverse of a matrix. Then, the Hill cipher would be a
public key encryption scheme. The receiver (usually called Bob) could
construct an encryption matrix and its inverse and make public his
encryption matrix. Any sender (usually called Alice) who wanted to send a
message to Bob could look up Bob’s encryption matrix and use it to encrypt
a message to Bob. When Bob received the ciphertext he could use the
inverse of the matrix (which he is keeping a secret) to decrypt the ciphertext.

Remember that this is one-way communication. If Bob wanted to reply to
Alice, he would have to look up Alice’s encryption matrix and use that
matrix to encrypt his reply. Then Alice could use the inverse of her
encryption matrix (which she is keeping a secret) to decrypt the ciphertext of
Bob’s reply.

This would solve the problem of key distribution because all encryption keys
are public.

But, can we actually find such mathematical processes — processes that are
easy to do but hard or impossible to undo without additional, secret
information?

It is not surprising that multiplication/factoring was an early choice. Itis
easy to multiply together two integers even if the integers are very large.
But, given a large integer, there is no efficient way to factor it. This is the
basis of the RSA public key encryption system.

Another mathematical problem involves logarithms. Raising an integer to
an exponent is relatively easy. But, given an integer and a base, it can be
hard to determine the exponent -- the logarithm. This is the basis of the El
Gamal public key encryption system.

Not surprisingly, the calculations for both RSA and El Gamal involve
modular arithmetic.
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Was the Hill cipher ever used?

Hill’s papers contributed two important ideas to cryptology. First, they freed
cryptology from encrypting just single letters and digraphs — they showed
that encryption of blocks of more than two letters was possible. And, Hill’s
papers showed the close connection between cryptology and mathematics.
This connection was emphasized by A.A. Albert in an address to the
American Mathematical Society in 1941.

But, was the Hill cipher ever used?

Hill’s cipher is a nice application of matrices, but matrix multiplication is
probably not easily done by soldiers who are in the trenches and watching
artillery shells flying overhead.

As a cipher to encrypt digraphs, Hill’s cipher is harder to use and weaker
than the Playfair cipher.

... Hill’s cipher system itself saw almost no practical use ...

The real obstacle to practical use of the Hill system is, of course, it
ponderousness. Hill sought to minimize this by patenting a device
that will encipher small polygrams (up to hexagrams). It consists of a
series of geared wheels connected by a sprocketed chain so that the
rotation of one wheel will turn all the others, but the range of its keys
appears to be limited.

... the Hill system has served as a U.S. governmental cryptosystem in

only one minor capacity — to encipher the three-letter groups of radio
cal I-signs. The Codebreakers by David Kahn
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A view from one end of the Hill cipher machine.
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http://en.wikipedia.org/wiki/Hill_cipher

The drawing on the next page is a side view of the Hill cipher machine and
is taken from The Codebreakers by David Kahn.

39


http://en.wikipedia.org/wiki/Image:Hill%27s_message_protector_fig4_cropped.png

Exercises

1. Multiply the following matrices, if possible.

3 68
la. )
(3 6]|[-2
1b. .
-1 4] 3

3 6|8 -2
-1 4|5 3]

1c.

(3 6|[-2 8
-1 4] 3 5]

3 5 13 -1]
le.|2 7 21| 3 |.

9 4 1] 2

1d.

3 5 13 37
1f. |2 7 21{
4
1 1 0][-11
g. 0 1 .

0 0][12
1h }
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3 7
2. Use a Hill cipher with key {5 12} to encrypt the following message.

Agnes Driscoll worked for NSA.
3. The following message was encrypted with a Hill cipher with key

37 Decrypt the message
5 12| yp ge.

ZKYZR QHBDM JMPVX WLCGF MIXGM PKBUZ
FHPCI XZTIW

4. Find the determinant of each of the following matrices modulo 26.

5. Which of the matrices in exercise 4 can be used as keys for a Hill cipher?
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6. For each of the matrices in exercise 4 that can be used as keys for a Hill
cipher, find the inverse modulo 26.

2 7 19

7. Use a Hill cipher withkey |0 5 8 | to encrypt the following
1 3 7

message: enigma.
5 6 4 1]

I _ 2 1 0 3 _

8. Use a Hill cipher with key 18 9 2 to encyrpt the following

2 4 6 7

message: united states.

9. Find a 2x2 matrix that can be used as a key for a Hill cipher.

5 8
10. What is special about the Hill cipher key LO 21} ? Does this make this

matrix a good or bad choice for a key?

11. A message is first encrypted with a Hill cipher with key [g g} and then

encrypted again with key{g ﬂ What is the resulting cipher?

12. Assume that an nxn matrix is the key for a Hill cipher. If one letter of
plaintext is changed, how many letters of ciphertext are likely to change?
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13. Assume that an nxn matrix is the key for a Hill cipher. How many
blocks of plaintext letters would we need to cryptanalyze the ciphertext?
How many total letters of plaintext is this?

14. Known plaintext attack on the Hill cipher. Find the key for the
following ciphertext message that was enciphered with a Hill cipher.

VRAAU OTNLK NIWJI QJIXXY BEOLW CVRYK FOYPQ
TWWMP ALUEA ACWWE GB

The plaintext message begins “The Riddle.”

15. For the very (very) brave — a ciphertext attack on the Hill cipher.

TZZ0K HMOTZ MOINY FTWCO UWINH CAGZH AZXME
ICZVH ZOTWE 1UGGG AETWE [1CZVH ZOYKX ZFAMW
PGWQQ JTZGT YRFAI KTWEI HIQTN ZAGVM YKXZP
GWQQJ ZCHNE ITZXG [IKTWE 1VUOZ XUXBQ DPTPS
WQZHA ZXMEl CZVHZ OYKXZ FAMWP GWQQJ ELTZQ
POZRF

16. Another ciphertext attack on the Hill cipher.

xrgsx ibkfy lawcc jrohm ouyyl mrggi ucscc ahakc
zwuhg axroc bipwe zatqd eqgrmh zgtmv ygoyq qlmqd
kbpyd dqqcj glhka pbkae clxru cuhbg wtetx riymt
ezdyd dhksj opgia piwzw fmzwa egpgil jpgxn oaady

17. You know that you are intercepting messages that are encrypted with a
2x2 Hill cipher. You are able to trick one of the parties of the
communications to send the plaintext digraphs az and za. You are able to
determine that az is enciphered as OJ and za is enciphered as Y.
Determine the encryption matrix and the decryption matrix.
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18. Consider the affine version of the Hill cipher. First encrypt a message

3 7
by multiplying by the matrix {5 12} and then adding to the result the
.| 6 : o |19 4
matrix {20}. Encrypt again by multiplying by the matrix {5 7} and

3
adding the matrix L?] What is the resulting cipher?

19. Again, consider the affine version of the Hill cipher. Would re-
encrypting using this cryptosystem increase security?

20. Show that the affine version of the Hill cipher is not a linear

transformation.

21. Would using a involutory key reduce the security of a Hill cipher?
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