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Chris Christensen 
MAT/CSC 483 
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Hill Cipher Cryptanalysis 

 
 
A known plaintext attack means that we know a bit of ciphertext and the 
corresponding plaintext – a crib.  This is not an unusual situation.  Often 
messages have stereotypical beginnings (e.g., to …, dear …) or stereotypical 
endings (e.g, stop) or sometimes it is possible (knowing the sender and 
receiver or knowing what is likely to be the content of the message) to guess 
a portion of a message.   
 
For a 2 2×  Hill cipher, if we know two ciphertext digraphs and the 
corresponding plaintext digraphs, we can easily determine the key or the key 
inverse.   
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Example one: 
 
Assume that we know that the plaintext of our ciphertext message that 
begins WBVE is inma. We could either solve for the key or the key 
inverse; let’s solve for the key inverse. 
 

Because WB corresponds to in 23 9
2 14

e f
g h
     
     

    
= ,  

 

and because VE corresponds to ma 22 13
5 1

e f
g h
     
     

    
= .   

 
These result in two sets of linear congruences modulo 26: 

 
23 2 9
22 5 13

e f
e f

+ =
+ =

 

 
and 

 
23 2 14
22 5 1

g h
g h

+ =
+ =

 

 
We solve the systems modulo 26 using Mathematica. 
 
 
In[5]:= Solve[23e+2f == 9 && 22e+5f == 13, {e, f}, Modulus -> 26] 
 
Out[5]= {{e->1,f->19}} 
 
In[6]:= Solve[23g+2h == 14 && 22g+5h == 1, {g, h}, Modulus -> 26] 
 
Out[6]= {{g->20,h->11}} 
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Example two: 
 
Ciphertext:  FAGQQ  ILABQ  VLJCY  QULAU  STYTO  JSDJJ  
PODFS  ZNLUH  KMOW 
 
We are assuming that this message was encrypted using a 2 2×  Hill cipher 
and that we have a crib.  We believe that the message begins “a crib.” 
 

ac ri
[1, 3] [18, 9]
[6, 1] [7, 17]
FA GQ

 

  



 4 

We could either solve for the key or the key inverse.  To solve for the key, 
we would solve 
 

1 6
3 1

a b
c d
     

=     
     

 

 
and 
 

18 7
9 17

a b
c d
     

=     
     

 

 
To solve for the key inverse, we would solve 
 

6 1
1 3

e f
g h
     

=     
     

 

 
and 
 

7 18
17 9

e f
g h
     

=     
     

 

 
We will solve for the key. 
 

1 6
3 1

a b
c d
     

=     
     

 represents two linear equations: 

 
3 6
3 1

a b
c d

+ =
+ =

 

 

and 18 7
9 17

a b
c d
     

=     
     

 represents  

 
18 9 7
18 9 17

a b
c d

+ =
+ =

 

 
Now we solve the following linear congruences mod 26. 
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3 6

18 9 7
a b
a b

+ =
 + =

  and 3 1
18 9 17

c d
c d

+ =
 + =

 

 

We will solve the pair of congruences 3 6
18 9 7

a b
a b

+ =
 + =

 first. 

 
To eliminate an unknown, multiply congruence 1 by 3 
 

 3 9 18
18 9 7

a b
a b

+ =
 + =

 

 
and subtract congruence 2 from congruence 1. 
 
 15 11a− =  
 
Modulo 26, -15 is 11. 
 
 11 11a =  
 
Divide by 11 to obtain a. 
 
 1a =  
 
Now substitute this in congruence 1. 
 
 1 3 6b+ =  
 
 3 5b =  
 
The multiplicative inverse of 3 is 9 modulo 26. 
 
 9 3 9 5 45 19mod 26b b= × = × = =  
 
So, the key looks like 
 

 1 19
c d
 
 
 
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Now solve the system  3 1
18 9 17

c d
c d

+ =
 + =

 

 
3 9 3

18 9 17
c d
c d

+ =
 + =

 

 
15 14c =  
 

7 15 7 14 98 20mod 26c c= × = × = =  
 
20 3 1d+ =  
 
3 19 7 mod 26d = − =  
 

9 3 9 7 63 11mod 26d d= × = × = =  
 

The key is 1 19
20 11
 
 
 

. 

 
 
In[7]:= Solve[a+3b == 6 && 18a+9b == 7, {a, b}, Modulus -> 26] 
 
Out[7]= {{a->1,b->19}} 
 
In[8]:= Solve[c+3d == 1 && 18c+9d == 17, {c, d}, Modulus -> 26] 
 
Out[8]= {{c->20,d->11}} 
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Example three: 
 
Plaintext:  
 
t h e p l a i n t e x t w o r d s a r e w r i t t e n i n s 
m a l l l e t t e r s x 
 
Ciphertext: 
 
X P U V L A C B R A H N U K J N G C L S A Z O F R A H W B U 
O E H D T U V X Y F C S 
 
We are assuming that the plaintext was enciphered using a 2 2×  Hill cipher.   
 
We notice that ciphertext UKJN corresponds to plaintext word.  We will use 
that relationship to solve for the key. 
 
 

wo rd
[23, 15] [18, 4]
[21, 11] [10, 14]

UK JN

 

 
The two systems of congruences are: 
 

23 15 21
18 4 10

a b
a b

+ =
 + =

  and 23 15 11
18 4 14

c d
c d

+ =
 + =

 

 
We will solve the system on the left. 
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23 15 21
18 4 10

a b
a b

+ =
 + =

 

 
To eliminate an unknown, multiply congruence number 1 by 4 and 
congruence number 2 by 15 both modulo 26. 
 

 14 8 6
10 8 20

a b
a b

+ =
 + =

 

 
Subtract the second congruence from the first. 
 
 4 14 12mod 26a = − =  
 
We cannot “divide by 4” because 4 does not have an inverse modulo 26, but 
there is still hope for a solution. 
 
This congruence corresponds to the equation 4 12 26a k= + , 4a is 12 plus a 
multiple of 26.  Notice that 2 divides the coefficient of a, the constant 12, 
and the modulus 26.  We reduce the modulus by dividing by 2. 

 
 2 6 13a k= +  
 
and we have a congruence modulo 13. 
 
 2 6mod13a =  
 
This congruence does not have a common factor among the coefficient, the 
constant, and the modulus. 
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2 6mod13a = 2 6mod13a =  
 
Here are the multiplicative inverses of the integers modulo 13: 
 
 Number   1 2 3  4 5  6  7  8  9  10  11  12 
 Multiplicative inverse  1 7 9 10 8 11  2  5  3  4   6   12  

 
To find a, multiply 2 6mod13a =  by the multiplicative inverse of 2, which is 
7. 
 
 7 2 7 6 42 3mod13a a= × = × = =  
 
So, a is 3 modulo 13.  But, there are two integers mod 26 that are 3 mod 13, 
namely, 3 and 3 + 13 = 16.  So, there are two possible values for a. 
 
Consider each case. 
 
If a = 3,  

 
 18 3 4 10b× = =  
 
 54 4 10b+ =  
 
 2 4 10b+ =  
 
 4 8mod 26b =  
 
 2 4mod13b =  
 
 7 2 7 4 26 2mod13b b= × = × = =  
 
So, b=2 or b = 2+13 = 15 modulo 16. 
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If a = 16,  
 
 18 16 4 10b× + =  
 
 288 4 10b+ =  
 
 2 4 10b+ =  
 
which yields the same solutions for b. 
 
Here are the 4 possible solutions for a and b. 
 

3 2
3 15

16 2
16 15

a b
a b
a b
a b

= =
= =
= =
= =

 

 
When we check, only two of these are actually solutions of the system – all 
are solutions of the second congruence. 

If we had substituted into the first congruence rather than the second, only 
two solutions would have resulted. 
 

 

Using Mathematica: 

 
In[9]:= Solve[23a+15b == 21 && 18a+4b == 10, {a, b}, Modulus -> 26] 
 
Out[9]= {{a->3+13 C[1],b->2+13 C[1]}} 
 
 
Notice that only two solutions resulted:  a = 3 and b = 2 or a = 16 and b = 
14. 
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Now solve 23 15 11
18 4 14

c d
c d

+ =
 + =

. 

 
 

14 8 18
10 8 2

a b
a b

+ =
 + =

 

 
4 16mod 26c =  
 
2 8mod13c =  
 

7 2 14 7 8 56 4mod13c c c= × = = × = =  
 
So, c = 4 or c = 4 + 13 = 17 modulo 26. 
 
Consider each case. 
 
If c = 4,  

 
 18 4 4 14d× + =  
 
 20 4 14d+ =  
 
 4 6 20mod 26d = − =  
 
 2 10mod13d =  
 
 7 2 7 10 5mod13d d= × = × =  
 
So, d = 5 or d = 5  + 13 = 18 modulo 26. 
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If c = 17,  
 
 18 17 4 14d× + =  
 
 20 4 14d+ =  
 
and we are led to the same solutions for d. 
 

4 5
4 18

17 5
17 18

c d
c d
c d
c d

= =
= =
= =
= =

 

 
Again, if we check these solutions, all are solutions of the second 
congruence, but only two are solutions of the system. 
 
 
Using Mathematica: 
 
In[1]:= Solve[23c+15d== 11 && 18c+4d == 14, {c, d}, Modulus -> 26] 
 
Out[1]= {{c->4+13 C[1],d->5+13 C[1]}} 
 
Again, Mathematica found only the two solutions of the system:  c = 4 and d 
= 5 or c = 17 and s = 18. 
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So, there are 4 possible 2 2×  matrices that could be the key. 
 
First, calculate the determinant of each.  Any matrix that does not have an 
invertible determinant modulo 26 (i.e., the determinant is not one of 1, 3, 5, 
7, 9, 11, 15, 17, 19, 21, 23, 25 modulo 26) can be eliminated.  (Two can be 
eliminated.) 
 
Then calculate the inverse for each of the remaining two matrices and try to 
decipher the ciphertext with each of the inverses.  The inverse that yields 
plaintext corresponds to the key. 
 
 

Algebraic cipher 
 
The Hill cipher is an algebraic cipher; there is an algebraic relationship 
between plaintext and ciphertext.  That relationship can be exploited to 
determine the key. 
 
To break a Hill cipher with a 2 2×  key requires determining four entries – 
either the four entries of the key or the four entries of the key inverse.  We 
can do that if we know the correspondence between plaintext and ciphertext 
for two digraphs because the correspondences will permit us to set up two 
systems of congruences – each system has two congruences of two 
unknowns. 
 
To break a Hill cipher with a n n×  key requires determining 2n  entries – the 

2n entries of the key or the 2n entries of the key inverse.  We can do that if 
we know the correspondence between plaintext and ciphertext for n n-graphs 
because the correspondences will permit us to set up n systems of 
congruences – each system has n congruences of n unknowns. 
 
The reason that we can solve these systems of congruences is because they 
are linear and there is an efficient method for solving systems of linear 
equations – Gaussian elimination.  
 
 


