270 : Crarter 12 Data Encryption Standard (DES)

- —

[1191], the algorithm was recertified for another five years [1150]. Software imple-
mentations of DES were finally allowed to be certified.

Anyone want to guess what will happen in 1998?
Apoked Cragrtacngl
12.2 DEscrIPTION OF DES c\nees

DES is a block cipher; it encrypts data in 64-bit blocks. A 64-bit block of plaintext
goes in one end of the algorithm and a 64-bit block of ciphertext comes out the other
end. DES is a symmetric algorithm: The same algorithm and key are used for both
encryption and decryption (except for minor differences in the key schedule].

The key length is 56 hits. (The key is usually expressed as a 64-bit number, but
every eighth bit is used for parity checking and is ignored. These parity bits are the
Jeast-significant bits of the key bytes.] The key can be any 56-bit number and can be
changed at any time. A handful of numbers are considered weak keys, but they can
easily be avoided. All security rests within the key.

At its simplest level, the algorithm is nothing more than a combination of the two
basic technigues of encryption: confusion and diffusion, The fundamental building
block of DES is a single combination of these techniques (a substitution followed by
a permutation) on the text, based on the key. This is known as a round. DES has 16
rounds; it applies the same combination of techniques on the plaintext block 16
times |see Figure 12.1).

The algorithm uses only standard arithmetic and logical operations on numbers of
64 bits at most, 8o it was easily implemented in late 1970s hardware technology.
The repetitive nature of the algorithm makes it ideal for use on a special-purpose
chip. Initial software implementations were clumsy, but current implementations
are better.

QOutline of the Alglm"!thm

DES operates on a 64-bit block of plaintext. After an initial permutation, the
block is broken into a right half and a left half, each 32 bits long. Then there are 16
rounds of identical operations, called Function f, in which the data are combined
with the key. After the sixteenth round, the right and left halves are joined, and a
final permutation (the inverse of the initial permutation| finishes off the algorithm.

In each round (see Figure 12.2), the key bits are shifted, and then 48 bits are
selected from the 56 bits of the key. The right half of the data is expanded to 48 bits
via an expansion permutation, combined with 48 bits of a shifted and permuted key
via an XOR, sent through 8 S-boxes producing 32 new bits, and permuted again.
These four operations make up Function f. The output of Function f is then com-
bined with the left half via another XOR. The result of these operations becomes the
new right half; the old right half becomes the new left half. These operations are
repeated 16 times, making 16 rounds of DES.

If B, is the result of the ith iteration, L, and R, are the left and right halves of B, K;
is the 48-hit key for round i, and f is the function that does all the substituting and
permuting and XORing with the key, then a round looks like:

12.2 Description of DES 271

=
Plaintext
! ¥ ¥
[Lo Wi Ry |
K

T
| LRy || R|-lnﬂ|?fﬂﬂu.K|}J

K>
1
T | [Rosly @ AR1LKD) |

_ —
" e T
T P
o -~

-— -

+ ¥
| L= | | Rya=Ly @R 2. K154
1
3

3 Kis
[Ri=Lis@ARis.K1s)] | Lig=Rys !

iphenext |

Figure 12.1 DES.

LJ=RI-]
Ri=L4-|'$‘f|:R:'-!- K1|

The Initial Permutation

The initial permutation occurs before round 1; it transposes the input block as
described in Table 12.1. This table, like all the other tables in this chapter, should be
read left to right, top to bottom. For example, the initial permutation moves bit 58
of the plaintext to bit position 1, bit 50 to bit position 2, bit 42 to bit position 3, and
so forth.

The initial permutation and the corresponding final permutation do not affect
DES’s security. [As near as anyone can tell, its primary purpose is to make it easier
to load plaintext and ciphertext data into a DES chip in byte-sized pieces. Remem-
ber that DES predates 16-bit or 32-bit microprocessor busses.] Since this bit-wise
permutation is difficult in software |although it is trivial in hardware], many soft-
ware implementations of DES leave out both the initial and final permutations.
While this new algorithm is no less secure than DES, it does not follow the DES

standard and should not be called DES.

/}"N CHaPTER 12 Data Encryption Standard (DES)
B

[
Ly Ry | Key
" ' Y
| shitt || shir |
v P]
/Expam:'nn Fﬂrml.ltaiiorl‘:\ \Cnmpmssiun F"Brmmaﬂun/
2.
'
\ E-Box Substitution /
r
rmiutation
)
v T 1‘ ;
Ly R; Koy

Figure 12.2 One round of DES.

The Key Transformation

Initially, the 64-bit DES key is reduced to a 56-bit key by ignoring every eighth bit.
This is described in Table 12.2. These bits can be used as parity check to ensure the
key is error-free. After the 56-bit key is extracted, a different 48-bit subkey is gener-
ated for each of the 16 rounds of DES. These subkeys, K, are determined in the fol-
lowing manner. .

First, the 56-bit key is divided into two 28-bit halves. Then, the halves are circu-
larly shifted left by either one or two bits, depending on the round. This shift is
given in Table 12.3.

Table 12.1
Initial Permutation
58, 50, 42, 34, 26, 18, 10, 2, 60, 51, 44
62, 54, 46, 38 30, 22, 14, & &4, 356
57, 49, 41 33, 25 17, 2 1, 59 _ 51, :
61, 53, 45 a7, 29, 21, 13, 5 63, 55 47,

w
=

28, T

a8, 27, 19 11, "3,
i b T o, PR

_q
o
L

DTG 1A e -l L= RS LS e B R T R i Y

12.2 Description of DES 273

| Table 12.2
Key Permutation

57, 49,, 41, 33, 25 17, 2, 1, 568 50, 42, 34, 26 18
10, %59 Bl 48 35 n 19 3L 3, 60, 52, 44 35
63, 55 47, 39, 31, 123 15 7, 62, 54, 46, 38, 30, 129,
14, 6 6L 53, 45 37 29 91, 13 o 28, M. 1%, 4

After being shifted, 48 out of the 56 bits are selected. Because this operation per-
mutes the order of the bits as well as selects a subset of hits, it is called a compres-
sion permutation. This operation provides a subset of 48 bits. Table 12.4 defines the
compression permutation (also called the permuted choice). For example, the bit in
position 33 of the shifted key moves to position 35 of the output, and the bit in posi-
tion 18 of the shifted key is ignored.

Because of the shifting, a different subset of key bits is used in each subkey. Each
bit is used in approximately 14 of the 16 subkeys, although not all bits are used
exactly the same number of times.

The Expansion Permutation

This operation expands the right half of the data, R, from 32 bits to 48 bits.
Because this operation changes the order of the bits as well as repeating certain bits,
it is known as an expansion permutation. This operation has two purposes; It makes
the right half the same size as the key for the XOR operation and it provides a longer
result that can be compressed during the substitution operation. However, neither
of those is its main cryptographic purpose. By allowing one bit to affect two substi-
tutions, the dependency of the output bits on the input bits spreads faster. This is
called an avalanche effect. DES is designed to reach the condition of having every hit
of the ciphertext depend on every bit of the plaintext and every bit of the key as

. quickly as possible.

Figure 12.3 defines the expansion permutation. This is sometimes called the E-
box. For each 4-bit input block, the first and fourth bits each represent two bits of
the output block, while the second and third bits each represent one bit of the out-
put block. Table 12.5 shows which output positions correspond to which input posi-
tions. For example, the bit in position 3 of the input block moves to position 4 of the
output block, and the bit in position 21 of the input block maves to positions 30 and
32 of the output block,

Although the output block is larger than the input block, each input block gener-
ates a unique output block.

Table 12.3
Number of Key Bits Shifted per Round

0 6 7 8 & 30 11 12 12 1815 1%
2222212222221

Bound 1 2
1

3
Number 1 2

274 . CrarrEr 12 Data Encryption Standard (DES)

Table 12.4
Compression Permutation

i 14, 17, 11, 24, T 2 3, 28, 15, 6, 11, 10,
23, 15, 12, 4, 26, B, 16, b 27, 20, 13, 2,
41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33. 48,
a4, 49, 39, 56, 34, 53, 48, 42, 50, a6, 29, 3%

The S-Box Substitution

After the compressed key is XORed with the expanded block, the 48-bit result
moves to a substitution operation. The substitutions are performed by eight substi-
tution boxes, or S-boxes. Each 5-box has a 6-bit input and a 4-bit output, and there are
eight different S-boxes. [The total memory requirement for the eight DES S-boxes is
256 hytes.) The 48 bits are divided into eight 6-bit sub-blocks. Each separate block is
operated on by a separate 5-box: The first block is operated on by S-box 1, the second
block is operated on by S-box 2, and so on, See Figure 12.4.

Each 5-box is a table of 4 rows and 16 columns. Each entry in the box is a 4-hit
number. The 6 input bits of the S-box specify under which row and column number
to lock for the output. Table 12.6 shows all eight S-hoxes.

The input bits specify an entry in the $-box in a very particular manner. Consider
an S-box input of & bits, labeled by, by, b, by, bs, and bg. Bits b, and b are combined
: to form a 2-bit number, from 0 to 3, which corresponds to a row in the table. The
; middle 4 bits, b, through ks are combined to form a 4-bit number, from 0 to 15,

which corresponds to a column in the table.
For example, assume that the-input to the sixth S-box [i.e,, bits 31 through 36 of
the XOR function| is 110011. The first and last bits combine to form 11, which cor-

1 2 3 4 5 &8 7 B B 101 12 13 14 15 16

|| : Eo

1 2 3 4 56 7B B MW 11-12 1374 18 16 171 1820 21 22 23 24

I
Figure 12.3 Expansion permutation.

12.2 Description of DES 275

Table 12.5
Expansion Permutation

a2, 1 2, 3, 4, 5. 4, 5; 6, T 8, a,
8, 9, 10, 11, 12, 13. 12, 13, 14, 15, 16, 17,

16, 17, 18, 19, 20, 21, 20, 21, 21, 23, M4 25,
24, 25, 26, 27, 18, 29, 28, 23, 30, al 32, 1

responds to row 3 of the sixth S-box. The middle 4 bits combine to form 1001, which
corresponds to the column 9 of the same S-box. The entry under row 3, column 9 of
S-box 6 is 14. (Remember to count rows and columns from 0 and not from 1.) The
value 1110 is substituted for 110011.

It is, of course, far easier to implement the S-boxes in software as 64-entry arrays. It
takes some rearranging of the entries to do this, but that's not hard. [Don't just change
the indexing without rearranging the entries. The S-boxes are designed very carefully.)
However, this way of describing the S-boxes helps visualize how they wark. Each
S-box can be viewed as a substitution function on a 4-bit entry: b, through b; go in,
and a 4-bit result comes out. Bits b, and b; come from neighboring blocks; they select
one out of four substitution functions available in the particular §-box.

The S-box substitution is the critical step in DES. The algorithm’s other opera-
tions are linear and easy to analyze. The S-boxes are nonlinear and, mare than any-
thing else, give DES its security.

The result of this substitution phase is eight 4-bit blocks which are recombined
into a single 32-bit block. This block moves to the next step: the P-box permutation.

The P-Box Permutation

The 32-bit output of the S-box substitution is permuted according to a P-box. This
permutation maps each input bit to an output position; no bits are used twice and
no bits are ignored. This is called a straight permutation or just a permutation. Table
12.7 shows the position to which each bit moves. For example, bit 21 moves to bit
4, while bit 4 moves to bit 31.

48-Bit Input
32-Bit Output

Fipure 12,4 5-bhox substitution,

276 CHAPTER 12 Data Encryption Standard (DES)

o
Table 12.6
S-Boxes
S-box 1:

14, &4 '38." 1. 2. 15 1, B, & 10 & 13, i
015 o o 18 9 13 1 R I E - S 8,
4. 3. 14 8. 18, R L E R 1 TR A 0,

j = D e s S [1, R e I MR i . 3,

S-box 2:

5 -1, B .. 6 11 & 4 8 i Fr i 10,
s B T B (e I S [s 0, 1, 10, 5,
AR I G B BN [. S - i &y 8 195 A 15,

13, 8 A 1. 3 15 4 LR b Y, e 9,

S-box 3:

13N R o I R R (PR L, 13 12 s

s SN s S SE - TP SR T [S Yo - RO - T S I ;

13 & A 9.0 # 15 3 B 11 () S A - 2
Lol -39 00 b e B F 4 15 14 ==

S-box 4;
P I - 0 & 9 10, 1 2 8. 5, 7T

1808 vl ey Ll Thy i E e AP B A

ML 6 S 00 12 Al T dds 1B a3, 14
- AR PN b S e | IR 2 S L R E R 5

S-box 5: :
A b R (- A 1 (T 5 AR B, & 3. A5N 13 4,

4 218 G 12 4, ELgE 7 s] 6 R T [T | S B,
£ T 1% 10, 3 EE 8. 15, 9 12, 5. & a,

2 I L SO B - YR O [N A N - I | 5,

S-box 6:

12Tl N 10 1 - TS R - O [. T T T |
L3S & R . A% 9, 5, &, 1, 12, 14,
S - TR TRt A W - A g 4, 10,
- T - i g 15, 18, 11, 14, 1, 7,
Shbox 7:
1) 2 14 15, 0, B, 13, N) 9, 7
2 S e R 4, 9, 1, 10, 14, o 5 5 132,
(R S 5 I o S - B O (O R [W | R e
6 11, 13, 8§, 1, 4, 10, 5 9, 5. < 15 1
Sbox 8:
o ik B4 B, 5 213, 1. 10, 9 a3, 14,
L 35 13K 10 3, 7. 4, 12, 5 6 1L
et (R Y | 9, 12, 14, 2, 0, T & - T
e Y e [A 4, 10, 8138, 16, <13 9, .

ook
o e

% 10 08 O

(L R

12.2 Description of DES A?\ ;
— |

Table 12.7
P-Box Permutation
I . T) T T T s s o ([T - R ¥ e 1 A B [o
% B 2y A4 32 2 a. 9. 18 13 30 i L 3 B 4 15

Finally, the result of the P-box permutation is XORed with the left half of the ini-
tial 64-bit block. Then the left and right halves are switched and another round

begins.

The Final Permutation

The final permutation is the inverse of the initial permutation and is described in
Table 12.8. Note that the left and right halves are not exchanged after the last round
of DES; instead the concatenated block R sL;; is used as the input to the final per-
mutation. There's nothing going on here; exchanging the halves and shifting around
the permutation wouwld yield exactly the same result. This is so that the algorithm
can be used to both encrypt and decrypt.

Decrypting DES

After all the substitutions, permutations, XORs, and shifting around, you might
think that the decryption algorithm is completely different and just as confusing as
the encryption algorithm. On the contrary, the various operations were chosen to
produce a very useful property: The same algorithm works for both encryption and
decryption.

With DES it is possible to use the same function to encrypt or decrypt a block.
The only difference is that the keys must be used in the reverse order. That is, if the
encryption keys for each round are K, K,, K, . . ., Ky, then the decrvption keys are
K Ky Kia ..., K,. The algorithm that generates the key used for each round is
circular as well. The key shift is a right shift and the number of positions shifted is
0,1,2222221222222]1.

Modes of DES

FIPS PUB 81 specifies four modes of operation: ECB, CBC, OFB, and CFB |sec
Chapter 2][1143]. The ANSI banking standards specify ECB and CBC for encryption,
and CBC and n-bit CFB for authentication [52).

In the software world, certification is usually not an issue. Because of its simplic-
ity, ECB is most often used in off-the-shelf commercial software products, although

Table 12.8
Final Permutation
40, 8, 48, 16, 56, 24, &4, 32, 39, ¥, 47, 15 55 23, 63, 31,
38, 45, 14, 54, 22, 62, 30, 37, 5 45 13, 53, 11. 61, 29,

B
G,

38, 4, 44 12, 52, 2, 60, 28, 35 4& 43 11, 51, 1% 59 27
2, 42, 14, 50, 18 o8 26 33 -1, 4L, " 5, a9, 17, &7, 25

278 CuarTer 12 Data Encryption Standard (DES)

it is the most valnerable to attack. CBC is used occasionally, even though it is just
slightly more complicated than ECB and provides much more security.

Hardware and Software Implementations of DES

Much has been written on efficient hardware and software implementations of
the algorithm [997,81,533,534,437,738,1573,176,271,1572). At this writing the
recordholder for the fastest DES chip is a prototype developed at Digital Equipment
Corporation [512]. It supports ECB and CBC modes and is based on a GaAs gate
array of 50,000 transistors. Data can be encrypted and decrypted at a rate of 1 giga-
bit per second, which translates to 16.8 million blocks per second. This is impres-
sive. Table 12.9 gives the specifications for some commercial DES chips. Seeming
discrepancies between clock speed and data rate are due to pipelining within the
chip; a chip might have multiple DES engines working in parallel.

The most impressive DES chip is VLSI's 6868 |formerly called “Gatekeeper”|. Not
only can it perform DES encryption in only 8 clock cycles {prototypes in the lab can
do it in 4 clock cycles], but it can also do-ECB triple-DES in 25 clock cycles, and OFB
or CBC triple-DES in 35 clock cycles. This sounds impaossible to me, too, but I
assure vou it works,

A software implementation of DES on an IBM 3090 mainframe can perform
39,000 DES encryptions per second. Most microcomputers are slower, but impres-
sive nonetheless. Table 12.10 [603,793] gives actual results and estimates for various
Intel and Motorola microprocessors.

12.3 SecuriTy oF DES

People have long questioned the security of DES [458]. There has been much spec-
alation on the key length, number of iterations, and design of the S-hoxes. The
S-hoxes were particularly mysterious—all those constants, without any apparent
reason as to why or what they’re for. Although IBM claimed that the inner workings
were the result of 17 man-years of intensive cryptanalysis, some peaple feared that
the NSA embedded a trapdoor into the algorithm so they would have an easy means
of decrypting messages.

The U.S. Senate Select Committee on Intelligence, with full top-secret clear-
ances, investigated the matter in 1978. The findings of the committee are classified,
but an unclassified summary of those findings exonerated the NSA from any
improper involvement in the algorithm’s design [1552]. “It was said to have con-
vinced IBM that a shorter key was adeguate, to have indirectly assisted in the devel-
opment of the 5-box structures and to have certified that the final DES algorithm
was, to the best of their knowledge, free of any statistical or mathematical weak-
nesses” [435]. However, since the government never made the details of the inves-
tigation public, many people remained unconvinced.

Tuchman and Meyer, two of the IBM cryptographers who designed DES, said the
NSA did not alter the design [841]:

Their basic approach was to look for strong substitution, permutation, and key
scheduling functions. . . . IBM has classified the notes containing the selection

