Spring 2015
Chris Christensen
Cryptology Notes

Extending Keys

The Vigenere cipher is an example of a periodic cipher. For the Vigenére
cipher, the period comes from repetition of the keyword; the cipher rotates
among a small number of Caesar ciphers — the rotation is described by the
letters of the keyword and the period is the length of the keyword.

The Vigenere cipher, by rotating among several alphabets, destroys the
value of single-letter frequency for cryptanalysis, but patterns still remain
because the cipher is periodic.

We have considered several periodic ciphers in addition to the Vigenére; e.g.,
the Gronsfeld cipher, the Beaufort cipher, and the variant Beaufort. We also,
at least in exercises, considered Vigenere ciphers having a square that
consisted of alphabets other than the 26 Caesar cipher alphabets. For the
remainder of this discussion of some problems with periodic ciphers, we will
focus on the Vigenere cipher (with the usual square).

How can we improve its security?

The first step in cryptanalysis of a periodic cipher is to discover its period.
To do this, we have used several attacks: we used the Kasiski attack, we
aligned ciphertext messages in such a way as to produce many “doubles,”
and we used brute force to separate alphabets until we have alphabets that
are monoalphabetic. Each of these attacks provides information about the
length of the key — the length of the period. Once that has been discovered,
breaking a Vigenére cipher becomes fairly easy — provided each of the
separated alphabets contains enough ciphertext letters.

Let’s say we have a plaintext message of 600 characters. If our keyword has
length 5, to encrypt we will rotate among five Caesar ciphers. 600/5 = 120
characters will be encrypted with each alphabet. If someone attacks our
cipher and is able to determine the length of the keyword, they can strip the
ciphertext into five alphabets of 120 characters each. Because each cipher is
a Caesar cipher, they can probably spot the shift from the frequencies of the
120 letters. So, the longer the length of the keyword, the more secure the

cipher. A keyword of length 10 would give 10 alphabets of length 60; the
shift could probably be determined. A keyword (or phrase) of length 20
would result in 20 alphabets of length 30; the shift would be harder to spot.
A keyword or phrase of length 60 would result in 60 alphabets of length
10. ... A keyword or phrase of length 600 (the length of the plaintext
message) would result in 600 alphabets of length 1; that would clearly be
secure. So, one way to strengthen a Vigenere cipher is to use a longer
keyword. A keyword equal in length to the message would be ideal.

A problem, of course, would be remembering the keyphrase. We could
write it down, but then we have the possibility of its being stolen. To create
a more secure cipher, we would create problems of key security.

Sometimes people specify long key phrases by portions of a page of a
common book. A person who wanted to steal the key might not recognize
the book as the key (especially if it were in a collection of books), but it
might be possible to attack this cipher by using the frequencies in the key —
the frequencies of plaintext English.

The cipher described in the paragraph above is called a running key cipher.
We will explore an attack on running key ciphers in a later section.

In this section we will discuss two ways to extend memorable keys. In the
next section we will consider “infinitely long” keys.

Re-encryption of Vigeneére Cipher

One way to extend memorable keys is to re-encrypt. For example,
enciphering a plaintext message with a Vigenére cipher using the keyword
notices (length is 7) and then re-encrypting it using a Vigenére cipher
with the keyword dream (length is 5) is equivalent to enciphering it using a
Vigeneére cipher with the 35-letter keystring shown on the last line below:

noticesnoticesnoticesnoticesnotices
dreamdreamdreamdreamdreamdreamdream
rgyjpikspgmujtasindrwftuvgwxobxahff

Notice that the length of the equivalent keystring is the least common
multiple of 7 and 5: LCM[7, 5] = 35. After 35 letters the n in notices
and the d in dreams are — for the first time -- again aligned and the
sequence repeats.

Using for keys word and cipher would result in a keystring of length
LCM[4, 6] = 12.

wordwordword
ciphercipher

Using for keys notices, dream, and then plaintext resultin a
keystring of length LCM[7, 5, 9] = 315.

Composing ciphers could be used to effectively generate a long key.

Autokey Ciphers
Another way to extend memorable keys is called autokey.

Here are two such schemes. One uses a keyword and extends the keyword
by plaintext, and the other uses a keyword and extends the keyword by
ciphertext.

Extending by Plaintext
The keyword is norse.
Key norsethemostfamousrotormachinewasenigma

Plaintext themostfamousrotormachinewasengima
Ciphertext GVVMESLAJIMAGNXRAHI1JDOVVZZEYAAREGEE

Extending by Ciphertext

The keyword is norse.

Key norsegvvmeslajmagnxrahi jdovvzzeyaaregee
Plaintext themostfamousrotormachinewasengima
Ciphertext GVVESYOAEEMISVSFWJ IUHDR IWDDJIMJLJIVM

Cryptanalysis of Autokey
Extending by ciphertext is easier to break than extending by plaintext.
We know that the ciphertext enciphers the message after the keyword. So,

we just keep sliding the ciphertext along the ciphertext message and
deciphering until we get plaintext.

Presumed key GVVESYOAEEMISVSFWJIUHDR IWDDJIMJLJVM
Ciphertext GVVESYOAEEMISVSFWJ 1UHDRIWDDJIMJILJIVM
Plaintext aaaaa

Presumed key GVVESYOAEEMISVSFWJ IUHDR IWDDJIMJLJIVM
Ciphertext GVVESYOAEEMISVSFWJ 1UHDR IWDDJIMJILJIVM
Plaintext pajog

Presumed key GVVESYOAEEMISVSFWJIUHDRIWDDJIMJLJIVM
Ciphertext GVVESYOAEEMISVSFWJIUHDRIWDDJIMJLJVM
Plaintext pjn

Presumed key GVVESYOAEEMISVSFWJ IUHDR IWDDJIMJLJIVM
Ciphertext GVVESYOAEEMISVSFWJIUHDRIWDDJIMJLJVM
Plaintext mdt

Presumed key GVVESYOAEEMISVSFWJIUHDRIWDDJIMJLJVM
Ciphertext GVVESYOAEEMISVSFWJ 1UHDRIWDDJIMJILJIVM
Plaintext stfam

The last has some hope (and we know that it is the correct choice). We
might have to do some guessing for the beginning of the message.

Extending by plaintext is a bit harder to break.

Let’s say that we know the length of the keyword. Say, it’s 5. Look at
encryption:

Key n t S o t C W
p/t t s o] t C w i
C/T GVVME SLAJM AGNXR AHIJD O0OVVZZ EYAAR EGEE

Just reverse that process.

C/T GVVME SLAJM AGNXR AHIJD O0OVWVZZ EYAAR EGEE
Key n t S o t C W
p/t t s o] t C w i

We decipher every fifth letter in the string by using as the key the previously
deciphered letter. How did we know that the first letter of the key was an n?
We didn’t; we just tried all 26 possible letters until we found one that
“worked.” How do we know it “worked?” One possibility is to check the
collection of presumed plaintext to see whether they (probably) come from a
single alphabet; i.e., check the index of coincidence. How did we know that
the length of the keyword was 5? We just tried all possibilities until we got
one that worked -1, 2, 3, 4,5,

A lot of trial and error, but it works.

History of Autokey Ciphers
Two men are noted a having developed early methods of autokey encryption.

The inventor of the first and imperfect system was Girolamo Cardano
(1501 - 1576), Milanese physician and mathematician who is known

today chiefly as one of the first popularizers of science and as author

of the world’s first text on the theory of probability.

Cardano employed plaintext as a key to encipher itself; starting the
key over from the beginning with each plaintext word. (The Codebreakers,
David Kahn)

Here is an example using Cardano’s scheme and our usual Vigenére square
and method. Remember that the key repeats beginning with each start of
each plaintext word.

Key thethemthemosthemothemostthethemos
Plaintext themostfamousrotormachinewasengima
Ciphertext ~ MOIFVWFYHQA IKKVXAFFHGUWFXPHWXUKUAS

But, while the autokey was a brilliant idea, Cardano formulated it
defectively ... the decipherer is in exactly the same position as the
cryptanalyst in trying to figure out the first plaintext word. This, once
obtained, unlocks the rest of the message. (The Codebreakers, David Kahn)

The two autokey methods that we gave above — extending by plaintext and
extending by ciphertext are due to Vigenere (1523 — 1596). Although
Vigenere used only one keyletter to begin each process.

[Vigenére] perfected Cardano’s [autokey cipher] in two ways. First,
[he] provided a priming key. This consisted of a single letter, known
to both encipherer and decipherer, with which the decipherer could
decipher the first cryptogram letter and so get a start on his work. ...
Secondly, Vigenere, unlike Cardano, did not recommence his key
with each plaintext word, which is a weakness, but kept it running
continuously. (The Codebreakers, David Kahn)

Exercise

Cryptanalyze the following ciphetext that was encrypted using autokey
extended by ciphertext.

VVHTD VTMTL MVUIS QMQIK TQLMV HFPPW FHWPN
QLOLU ULHDN 1YL

