

Polygraphic Substitution Ciphers: The Hill cipher

The Playfair cipher is a polygraphic cipher; it enciphers more than one letter at a time. Recall that the Playfair cipher enciphers digraphs – two-letter blocks. An attack by frequency analysis would involve analyzing the frequencies of the $26 \times 26 = 676$ digraphs of plaintext. Complications also occur when digraph frequencies are considered because sometimes common plaintext digraphs are split between blocks. For example, when encrypting the phrase *another type* the digraphs are *an ot he rt yp e_*, and the common digraph *th* is split between blocks.

Frequency analysis would be even more complicated if we had a cryptosystem that enciphered trigraphs – three-letter blocks. Frequency analysis would involve knowing the frequencies of the $26 \times 26 \times 26 = 17576$ trigraphs.

Systems that enciphered even larger blocks would make cryptanalysis even more difficult. There are $26 \times 26 \times 26 \times 26 = 456976$ blocks of length 4,
 $26 \times 26 \times 26 \times 26 \times 26 = 11881376$ blocks of length 5,
 $26 \times 26 \times 26 \times 26 \times 26 \times 26 = 308915776$ blocks of length 6

If we had a cryptosystem that encipher blocks of length 100, there would be

3142930641582938830174357788501626427282669988762475256374173
1753989959842010402346543259906970228933096407508161171919783
5869803511992549376

plaintext blocks.

But, there is no obvious way to extend the Playfair key square to three or more dimensions.

... cryptographers ... tried to extend [Wheatstone's Playfair cipher's] geometrical technique to trigraphic substitutions. Nearly all have failed. Perhaps the best known effort was that of Count Luigi Gioppi di Tükheim, who in 1897 produced a pseudo-trigraphic system in

which two letters were monoalphabetically enciphered and the third depended only on the second. Finally, about 1929, a young American mathematician, Jack Levine, used six 5×5 squares to encipher trigraphs in an ingenious extension of the Playfair. But he did not disclose his method.

This was the situation when a 38-year-old assistant professor of mathematics at Hunter College in New York published a seven-page paper entitled “Cryptography in an Algebraic Alphabet” in *The American Mathematical Monthly* for June-July 1929. He was Lester S. Hill [1890 – 1961]. ... Later in the summer in which his paper on algebraic cryptography appeared, he expanded the topic before the American Mathematical Society in Boulder, Colorado. This lecture was later published in *The American Mathematical Monthly* [March 1931] as “Concerning Certain Linear Transformation Apparatus of Cryptography.” *The Codebreakers* by David Kahn

The Hill cipher is a cryptosystem that enciphers blocks. Any block size may be selected, but it might be difficult to find keys for enciphering large blocks.

Matrices

The Hill cipher is usually taught by means of matrices.

A **matrix** is just a rectangular array of numbers. For example,

$$\begin{bmatrix} 1 & 9 \\ -3 & 7 \end{bmatrix}, \begin{bmatrix} -1 & 2 & 17 \\ 43 & 0 & 9 \\ 7 & -23 & 9 \end{bmatrix}, \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \text{ and } \begin{bmatrix} 0 & 6 & -8 & 23 & 65 \\ -9 & 76 & 1 & 98 & -10 \\ 11 & 7 & 34 & 72 & 1 \end{bmatrix}$$

are all matrices.

The dimension of a matrix is given as

$$\text{number of rows} \times \text{number of columns}.$$

For the four matrices given above, the dimensions are 2×2 , 3×3 , 2×1 , and 3×5 , respectively. The dimensions are read as “2 by 2, 3 by 3, 2 by 1, and 3 by 5.”

If the number of rows equals the number of columns, the matrix is said to be a **square matrix**. The first two matrices above are square matrices.

If the matrix has only one column, the matrix is said to be a **column matrix**. The third matrix above is a column matrix.

We will deal exclusively with square and column matrices.

Matrices can be added, subtracted, multiplied, and in some cases divided just like numbers. The fact that an array of numbers can be treated as a single number is what permits the theory of matrices to extend cryptographic techniques to higher dimensions.

Multiplication by Square Matrices

One origin of matrices is the solution of systems of linear equations, and the multiplication of matrices reflects that use.

For example, consider this system of two linear equations in two variables x and y . a, b, c, d, u , and v represent constants (i.e., numbers).

$$ax + by = u$$

$$cx + dy = v$$

This system of equations can be represented by one matrix equation

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} u \\ v \end{bmatrix}.$$

The square matrix is called the *coefficient matrix* (a, b, c , and d are the coefficients of the variables x and y). There are two column matrices – one consisting of the two variables x and y and the other of the two constants that appear on the right hand side of the system u and v .

For the moment, we will only consider matrix multiplication of the form

$$\text{square matrix} \times \text{column matrix}$$

Such a multiplication is only defined if the number of columns of the square matrix equals the number of rows of the column matrix.

The system of equations gives us the pattern for multiplication.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$

The top entry of the product is calculated by, first, taking the entries of the first row of the square matrix and multiplying them "term-by-term" with the entries of the column matrix and then adding those products.

The lower entry of the product is calculated by, first, taking the entries of the second row of the square matrix and multiplying them "term-by-term" with the entries of the column matrix and then adding those products.

For example, $\begin{bmatrix} 3 & 7 \\ 5 & 12 \end{bmatrix} \begin{bmatrix} 8 \\ 5 \end{bmatrix} = \begin{bmatrix} 59 \\ 100 \end{bmatrix}$

$$\begin{array}{rcl} 3 \times 8 & + & 7 \times 5 = 59 \\ 5 \times 8 & + & 12 \times 5 = 100 \end{array}$$

and $\begin{bmatrix} 3 & 7 \\ 5 & 12 \end{bmatrix} \begin{bmatrix} 18 \\ 2 \end{bmatrix} = \begin{bmatrix} 68 \\ 114 \end{bmatrix}$

$$\begin{array}{rcl} 3 \times 18 & + & 7 \times 2 = 68 \\ 5 \times 18 & + & 12 \times 2 = 114 \end{array}$$

Multiplication is defined similarly for higher dimension square and column matrices. For example, for 3×3 matrices

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} ax + by + cz \\ dx + ey + fz \\ gx + hy + iz \end{bmatrix}.$$

For example, $\begin{bmatrix} 1 & 0 & 7 \\ -3 & 4 & 9 \\ 12 & -7 & 5 \end{bmatrix} \begin{bmatrix} 5 \\ -3 \\ 12 \end{bmatrix} = \begin{bmatrix} 89 \\ 81 \\ 141 \end{bmatrix}$

$$\begin{array}{rcl} 1 \times 5 & + & 0 \times -3 & + & 7 \times 12 = 89 \\ -3 \times 5 & + & 4 \times -3 & + & 9 \times 12 = 81 \\ 12 \times 5 & + & -7 \times -3 & + & 5 \times 12 = 141 \end{array}$$

Etc.

To multiply two square matrices of the same dimension, we just do the multiplication one column at a time.

For example, $\begin{bmatrix} 3 & 7 \\ 5 & 12 \end{bmatrix} \begin{bmatrix} 8 & 18 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} 59 & 68 \\ 100 & 114 \end{bmatrix}$.

$$\begin{bmatrix} 3 & 7 \\ 5 & 12 \end{bmatrix} \begin{bmatrix} 8 \\ 5 \end{bmatrix} = \begin{bmatrix} 59 \\ 100 \end{bmatrix} \text{ and } \begin{bmatrix} 3 & 7 \\ 5 & 12 \end{bmatrix} \begin{bmatrix} 18 \\ 2 \end{bmatrix} = \begin{bmatrix} 68 \\ 114 \end{bmatrix}.$$

Hill's Cipher

What is usually referred to as the Hill cipher is only one of the methods that Hill discussed in his papers, and even then it is a weakened version. We will comment more about this later, but first we will consider what is usually called the Hill cipher.

The Hill cipher is a multiplicative cipher. It uses matrix multiplication to transform blocks of plaintext letters into blocks of ciphertext.

Here is an example that encrypts digraphs.

Consider the following message:

Herbert Yardley wrote The American Black Chamber.

Break the message into digraphs:

he rb er ty ar dl ey wr ot et he am er ic an bl ac kc
ha mb er

(If the message did not consist of an even number of letters, we would place a null at the end.)

Now convert each pair of letters to its number-pair equivalent. We will use our usual $a = 01, \dots, z = 26$.

8 5 18 2 5 18 20 25 1 18 4 12 5 25 23 18 15 20 5 20 8 5
1 13 5 18 9 3 1 14 2 12 1 3 11 3 8 1 13 2 5 18

Now we encrypt each pair using the key which is the matrix $\begin{bmatrix} 3 & 7 \\ 5 & 12 \end{bmatrix}$.

Make the first pair of numbers into a column vector ($h(8) e(5)$), and multiply that matrix by the key.

$$\begin{bmatrix} 3 & 7 \\ 5 & 12 \end{bmatrix} \begin{bmatrix} 8 \\ 5 \end{bmatrix} = \begin{bmatrix} 59 \\ 100 \end{bmatrix}$$

Of course, we need our result to be mod 26

$$\begin{bmatrix} 59 \\ 100 \end{bmatrix} \equiv \begin{bmatrix} 7 \\ 22 \end{bmatrix} \pmod{26}$$

The ciphertext is G (7) V (22).

For the next pair r (18) b (2),

$$\begin{bmatrix} 3 & 7 \\ 5 & 12 \end{bmatrix} \begin{bmatrix} 18 \\ 2 \end{bmatrix} \equiv \begin{bmatrix} 16 \\ 10 \end{bmatrix} \pmod{26},$$

and 16 corresponds to P and 10 corresponds to J. Etc.

Doing this for every pair we obtain

GVPJKG AJYMRHHMMSCCYEGVPEKGVCWQLXXOBMEZAKKG

What makes the Hill cipher a block cipher is that each plaintext string is encrypted “at once:” the change of one letter in a plaintext block is likely to change all of the letters in the ciphertext block. Notice, for example, that changing the plaintext block he to ie changes the ciphertext block from GV to JA.

Decryption

Of course, we need a procedure for decrypting this. Just like for the multiplicative ciphers, we cannot use all matrices as keys because we cannot undo the multiplication for all matrices.

To go from plaintext to ciphertext in the first example above we did

$$\begin{bmatrix} 3 & 7 \\ 5 & 12 \end{bmatrix} \begin{bmatrix} 8 \\ 5 \end{bmatrix} \equiv \begin{bmatrix} 7 \\ 22 \end{bmatrix} \pmod{26}$$

Now we want to undo this; we want to find a matrix so that

$$\begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix} \begin{bmatrix} 7 \\ 22 \end{bmatrix} \equiv \begin{bmatrix} 8 \\ 5 \end{bmatrix} \pmod{26}$$

i.e, we want to find a matrix $\begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix}$ so that

$$\begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix} \begin{bmatrix} 3 & 7 \\ 5 & 12 \end{bmatrix} \begin{bmatrix} 8 \\ 5 \end{bmatrix} \equiv \begin{bmatrix} 8 \\ 5 \end{bmatrix} \pmod{26}$$

We want $\begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix} \begin{bmatrix} 3 & 7 \\ 5 & 12 \end{bmatrix}$ to leave $\begin{bmatrix} 8 \\ 5 \end{bmatrix}$ unchanged.

Matrix Inverse

The matrix we are looking for is called the inverse of $\begin{bmatrix} 3 & 7 \\ 5 & 12 \end{bmatrix}$ and is

denoted $\begin{bmatrix} 3 & 7 \\ 5 & 12 \end{bmatrix}^{-1}$.

It is easy to verify that $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \begin{bmatrix} \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{bmatrix}$.

The product $\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \frac{d}{ad-bc} & \frac{-b}{ad-bc} \\ \frac{-c}{ad-bc} & \frac{a}{ad-bc} \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ which

is called the **identity matrix** because the effect of multiplying a matrix by it is to leave the other matrix unchanged. (It is like multiplying a number by 1.)

Notice that to calculate the inverse of the matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ we must be able to divide by $ad - bc$; i.e., we must have a multiplicative inverse for $ad - bc$. Because we are working modulo 26, that means that $ad - bc$ must be one of 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, or 25. Otherwise, the multiplication cannot be undone; therefore, encryption cannot be undone.

Determinant

$ad - bc$ is called the **determinant** of $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Notice that the determinant of

a 2×2 is just the product down the upper left to lower right diagonal minus the product down the upper right to lower left diagonal. For a matrix to have an inverse modulo 26, the determinant of the matrix must be 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, or 25 modulo 26. To be able to undo multiplication by a matrix mod 26, the determinant of the matrix must be 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, or 25 modulo 26. For a matrix to be a key for a Hill cipher, the determinant of the matrix must be 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, or 25 modulo 26.

The determinant of $\begin{bmatrix} 3 & 7 \\ 5 & 12 \end{bmatrix}$ is $3 \times 12 - 7 \times 5 = 1 \equiv 1 \pmod{26}$. So, the inverse

of $\begin{bmatrix} 3 & 7 \\ 5 & 12 \end{bmatrix}$ is $\begin{bmatrix} 3 & 7 \\ 5 & 12 \end{bmatrix}^{-1} = \begin{bmatrix} 12 & -7 \\ -5 & 3 \end{bmatrix} \equiv \begin{bmatrix} 12 & 19 \\ 21 & 3 \end{bmatrix} \pmod{26}$. This is a special case because the determinant is 1.

Here is an example of finding the inverse of a 2×2 matrix when the determinant is not 1.

The determinant of $\begin{bmatrix} 9 & 4 \\ 5 & 7 \end{bmatrix}$ is $9 \times 7 - 4 \times 5 = 63 - 20 = 43 \equiv 17 \pmod{26}$.

Because 17 has a multiplicative inverse modulo 26, this matrix has an inverse. The inverse of the matrix is

$$\begin{bmatrix} \frac{7}{17} & \frac{-4}{17} \\ \frac{-5}{17} & \frac{9}{17} \end{bmatrix} \pmod{26}.$$

Dividing by 17 modulo 26 is the same as multiplying by the multiplicative inverse of 17 modulo 26. Recall that the multiplicative inverse of 17 is 23 modulo 26. So, the inverse of the matrix is

$$\begin{bmatrix} 7 & -4 \\ 17 & 17 \\ -5 & 9 \\ 17 & 17 \end{bmatrix} \bmod 26 \equiv \begin{bmatrix} 7 \times 23 & -4 \times 23 \\ -5 \times 23 & 9 \times 23 \end{bmatrix} \bmod 26$$

$$\equiv \begin{bmatrix} 161 & -92 \\ -115 & 207 \end{bmatrix} \bmod 26 \equiv \begin{bmatrix} 5 & 12 \\ 15 & 25 \end{bmatrix} \bmod 26$$

Calculating the determinant of an $n \times n$ matrix with $n > 2$ is more difficult. The pattern used for a 2×2 matrix is a very special case. Usually calculators and computer algebra systems are able to calculate determinants.

Similarly, calculating the inverse of an $n \times n$ matrix with $n > 2$ differs from calculating the inverse of a 2×2 matrix. Again, usually calculators and computer algebra systems are able to calculate inverses.

Decryption

We return to the earlier example. Encrypting

Herbert Yardley wrote The American Black Chamber.

using the key $\begin{bmatrix} 3 & 7 \\ 5 & 12 \end{bmatrix}$ resulted in the ciphertext

GVPJKG AJYMRHHMMSCCYEGVPEKGVCWQLXXOBMEZAKKG

We use the inverse of the key $\begin{bmatrix} 12 & 19 \\ 21 & 3 \end{bmatrix}$ to decrypt gv, which is the first digraph of the ciphertext.

g corresponds to 7, and v corresponds to 22.

$$\begin{bmatrix} 12 & 19 \\ 21 & 3 \end{bmatrix} \begin{bmatrix} 7 \\ 22 \end{bmatrix} = \begin{bmatrix} 8 \\ 5 \end{bmatrix} \pmod{26}$$

$h(8) \in (5)$.

In a similar manner, we can decrypt the remainder of the ciphertext.

Hill ciphers that encipher larger blocks

Notice that the multiplicative cipher is just the 1×1 case of the Hill cipher; individual letters are enciphered one at a time.

2×2 invertible matrices modulo 26 (an invertible matrix is a matrix that has an inverse) can be used to encipher digraphs. 3×3 invertible matrices modulo 26 can be used to encipher trigraphs. 4×4 invertible matrices modulo 26 can be used to encipher blocks of 4 letters. Etc.

Finding keys is pretty much a trial and error process. That means that it can be very difficult to find a key for encrypting large blocks.

Known plaintext attack

It can be difficult to cryptanalyze a Hill cipher using a ciphertext only attack (we will do one later), but it is easy to break using a **known plaintext attack**. A known plaintext attack means that we know a bit of ciphertext and the corresponding plaintext – a crib. This is not an unusual situation. Often messages have stereotypical beginnings (e.g., *to* ..., *dear* ...) or stereotypical endings (e.g., *stop*) or sometimes it is possible (knowing the sender and receiver or knowing what is likely to be the content of the message) to guess a portion of a message.

A known plaintext attack works well against a Hill cipher because there is an algebraic relationship between plaintext and ciphertext (as there is for Caesar ciphers, multiplicative ciphers, and affine ciphers) and the relationship is linear (as it was for Caesar ciphers, multiplicative ciphers, and affine ciphers). The algebraic relationship between plaintext and ciphertext combines with the relationship between some plaintext and ciphertext letters given by the crib and results in a system of algebraic equations that usually can be solved because it is linear (as we did for Caesar ciphers, multiplicative ciphers, and affine ciphers).

For a 2×2 Hill cipher, if we know two ciphertext digraphs and the corresponding plaintext digraphs, we can easily determine the key or the key inverse. Assume that we know that the plaintext of our ciphertext message that begins WBVE is inma. Because WB corresponds to in

$$\begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} 23 \\ 2 \end{bmatrix} = \begin{bmatrix} 9 \\ 14 \end{bmatrix}, \text{ and because VE corresponds to ma} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} 22 \\ 5 \end{bmatrix} = \begin{bmatrix} 13 \\ 1 \end{bmatrix}.$$

This results in two sets of linear congruences modulo 26:

$$\begin{aligned} 23e + 2f &= 9 \\ 22e + 5f &= 13 \end{aligned}$$

and

$$\begin{aligned} 23g + 2h &= 14 \\ 22g + 5h &= 1 \end{aligned}$$

We solve the systems modulo 26 using *Mathematica*.

Solve[23e + 2f == 9 && 22e + 5f == 13, {e, f}, Modulus -> 26]

{ {e->1,f->19} }

Solve[23g + 2h == 14 && 22g + 5h ==1, {g, h}, Modulus -> 26]

{ {g->20,h->11} }

Again (with a lot less assuming) we find that the key inverse is $\begin{bmatrix} 1 & 19 \\ 20 & 11 \end{bmatrix}$.

One thing that should be learned from this example is that a cryptosystem should have some nonlinear piece.

Two More Examples of a Known Plaintext Attack

Here are two more examples of cryptanalyzing a Hill cipher with a known plaintext attack. Each example is done by hand – without using *Mathematica*. In example one, there is no need to reduce the modulus; in example two the modulus must be reduced.

Example one:

Ciphertext: FAGQQ I LABQ VLJCY QULAU STYTO JSDJJ
PODFS ZNLUH KMOW

We are assuming that this message was encrypted using a 2×2 Hill cipher and that we have a crib. We believe that the message begins “a crib.”

$$\begin{array}{c|c} \text{ac} & \text{ri} \\ [1, 3] & [18, 9] \\ [6, 1] & [7, 17] \\ \text{FA} & \text{GQ} \end{array}$$

We could either solve for the key or the key inverse. To solve for the key, we would solve

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 6 \\ 1 \end{bmatrix}$$

and

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 18 \\ 9 \end{bmatrix} = \begin{bmatrix} 7 \\ 17 \end{bmatrix}$$

To solve for the key inverse, we would solve

$$\begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} 6 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

and

$$\begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} 7 \\ 17 \end{bmatrix} = \begin{bmatrix} 18 \\ 9 \end{bmatrix}$$

We will solve for the key.

$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 6 \\ 1 \end{bmatrix}$ represents two linear equations:

$$\begin{array}{rcl} a & +3b & = 6 \\ c & +3d & = 1 \end{array}$$

and $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 18 \\ 9 \end{bmatrix} = \begin{bmatrix} 7 \\ 17 \end{bmatrix}$ represents

$$\begin{array}{rcl} 18a & +9b & = 7 \\ 18c & +9d & = 17 \end{array}$$

Now we solve the following linear congruences mod 26.

$$\begin{cases} a + 3b = 6 \\ 18a + 9b = 7 \end{cases} \text{ and } \begin{cases} c + 3d = 1 \\ 18c + 9d = 17 \end{cases}$$

We will solve the pair of congruences $\begin{cases} a + 3b = 6 \\ 18a + 9b = 7 \end{cases}$ first.

To eliminate an unknown, multiply congruence 1 by 3

$$\begin{cases} 3a + 9b = 18 \\ 18a + 9b = 7 \end{cases}$$

and subtract congruence 2 from congruence 1.

$$-15a = 11$$

Modulo 26, -15 is 11.

$$11a = 11$$

Divide by 11 to obtain a .

$$a = 1$$

Now substitute this in congruence 1.

$$1 + 3b = 6$$

$$3b = 5$$

The multiplicative inverse of 3 is 9 modulo 26.

$$b = 9 \times 3b = 9 \times 5 = 45 = 19 \pmod{26}$$

So, the key looks like

$$\begin{bmatrix} 1 & 19 \\ c & d \end{bmatrix}$$

Now solve the system $\begin{cases} c + 3d = 1 \\ 18c + 9d = 17 \end{cases}$

$$\begin{cases} 3c + 9d = 3 \\ 18c + 9d = 17 \end{cases}$$

$$15c = 14$$

$$c = 7 \times 15c = 7 \times 14 = 98 = 20 \pmod{26}$$

$$20 + 3d = 1$$

$$3d = -19 = 7 \pmod{26}$$

$$d = 9 \times 3d = 9 \times 7 = 63 = 11 \pmod{26}$$

The key is $\begin{bmatrix} 1 & 19 \\ 20 & 11 \end{bmatrix}$.

Example two:

We are assuming that we have a ciphertext message was that encrypted using a 2×2 Hill cipher and that we have a crib. We believe that ciphertext UKJN corresponds to plaintext word.

$$\begin{array}{c|c} \text{wo} & \text{rd} \\ [23, 15] & [18, 4] \\ [21, 11] & [10, 14] \\ \text{UK} & \text{JN} \end{array}$$

The two systems of congruences are:

$$\begin{cases} 23a + 15b = 21 \\ 18a + 4b = 10 \end{cases} \text{ and } \begin{cases} 23c + 15d = 11 \\ 18c + 4d = 14 \end{cases}$$

We will solve the system on the left.

To eliminate an unknown, multiply congruence number 1 by 4 and congruence number 2 by 15 both modulo 26.

$$\begin{cases} 14a + 8b = 6 \\ 10a + 8b = 20 \end{cases}$$

Subtract the second congruence from the first.

$$4a = -14 = 12 \pmod{26}$$

This congruence corresponds to the equation $4a = 12 + 26k$, $4a$ is 12 plus a multiple of 26. Notice that 2 divides the coefficient of a , the constant 12, and the modulus 26. We reduce the modulus by dividing by 2.

$$2a = 6 + 13k$$

and we have a congruence modulo 13.

$$2a = 6 \pmod{13}$$

This congruence does not have a common factor among the coefficient, the constant, and the modulus.

Here are the multiplicative inverses of the integers modulo 13:

Number	1	2	3	4	5	6	7	8	9	10	11	12
Multiplicative inverse	1	7	9	10	8	11	2	5	3	4	6	12

To find a , multiply $2a = 6 \pmod{13}$ by the multiplicative inverse of 2, which is 7.

$$a = 7 \times 2a = 7 \times 6 = 42 = 3 \pmod{13}$$

So, a is 3 modulo 13. But, there are two integers mod 26 that are 3 mod 13, namely, 3 and $3 + 13 = 16$. So, there are two possible values for a .

If $a = 3$,

$$18 \times 3 = 4b = 10$$

$$54 + 4b = 10$$

$$2 + 4b = 10$$

$$4b = 8 \pmod{26}$$

$$2b = 4 \pmod{13}$$

$$b = 7 \times 2b = 7 \times 4 = 26 = 2 \pmod{13}$$

So, $b=2$ or $b = 2+13 = 15$ modulo 16.

If $a = 16$,

$$18 \times 16 + 4b = 10$$

$$288 + 4b = 10$$

$$2 + 4b = 10$$

which yields the same solutions for b .

Here are the 4 possible solutions for a and b .

$$a = 3 \quad b = 2$$

$$a = 3 \quad b = 15$$

$$a = 16 \quad b = 2$$

$$a = 16 \quad b = 15$$

Now solve $\begin{cases} 23c + 15d = 11 \\ 18c + 4d = 14 \end{cases}$.

$$\begin{cases} 14a + 8b = 18 \\ 10a + 8b = 2 \end{cases}$$

$$4c = 16 \pmod{26}$$

$$2c = 8 \pmod{13}$$

$$c = 7 \times 2c = 14c = 7 \times 8 = 56 = 4 \pmod{13}$$

So, $c = 4$ or $c = 4 + 13 = 17$ modulo 26.

If $c = 4$,

$$18 \times 4 + 4d = 14$$

$$20 + 4d = 14$$

$$4d = -6 = 20 \pmod{26}$$

$$2d = 10 \pmod{13}$$

$$d = 7 \times 2d = 7 \times 10 = 5 \pmod{13}$$

So, $d = 5$ or $d = 5 + 13 = 18$ modulo 26.

If $c = 17$,

$$18 \times 17 + 4d = 14$$

$$20 + 4d = 14$$

and we are led to the same solutions for d .

$$c = 4 \quad d = 5$$

$$c = 4 \quad d = 18$$

$$c = 17 \quad d = 5$$

$$c = 17 \quad d = 18$$

There are 16 possible 2×2 matrices that could be the key.

$$\begin{array}{cccc}
\begin{bmatrix} 3 & 2 \\ 4 & 5 \end{bmatrix} & \begin{bmatrix} 3 & 2 \\ 4 & 18 \end{bmatrix} & \begin{bmatrix} 3 & 2 \\ 17 & 5 \end{bmatrix} & \begin{bmatrix} 3 & 2 \\ 17 & 18 \end{bmatrix} \\
\begin{bmatrix} 3 & 15 \\ 4 & 5 \end{bmatrix} & \begin{bmatrix} 3 & 15 \\ 4 & 18 \end{bmatrix} & \begin{bmatrix} 3 & 15 \\ 17 & 5 \end{bmatrix} & \begin{bmatrix} 3 & 15 \\ 17 & 18 \end{bmatrix} \\
\begin{bmatrix} 16 & 2 \\ 4 & 5 \end{bmatrix} & \begin{bmatrix} 16 & 2 \\ 4 & 18 \end{bmatrix} & \begin{bmatrix} 16 & 2 \\ 17 & 5 \end{bmatrix} & \begin{bmatrix} 16 & 2 \\ 17 & 18 \end{bmatrix} \\
\begin{bmatrix} 16 & 15 \\ 4 & 5 \end{bmatrix} & \begin{bmatrix} 16 & 15 \\ 4 & 18 \end{bmatrix} & \begin{bmatrix} 16 & 15 \\ 17 & 5 \end{bmatrix} & \begin{bmatrix} 16 & 15 \\ 17 & 18 \end{bmatrix}
\end{array}$$

First, calculate the determinant of each. Any matrix that does not have an invertible determinant modulo 26 (i.e., the determinant is not one of 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25 modulo 26) can be eliminated. Then try to decipher the messages with each of the remaining messages. The matrix that yields plaintext is the key.

To break a Hill cipher with a 2×2 key requires determining four entries – the four entries of the key or the four entries of the key inverse. We can do that if we know the correspondence between plaintext and ciphertext for two digraphs because the correspondences will permit us to set up two systems of congruences – each system has two congruences of two unknowns.

To break a Hill cipher with a $n \times n$ key requires determining n^2 entries – the n^2 entries of the key or the n^2 entries of the key inverse. We can do that if we know the correspondence between plaintext and ciphertext for n independent n -graphs because the correspondences will permit us to set up n systems of congruences – each system has n congruences of n unknowns.

The reason that we can solve these systems of congruences is because they are linear. The solutions of linear systems of equations of congruences is well-understood.

Ciphertext Attack

Here is a ciphertext that is known to be enciphered with a Hill cipher.

```
wbvec itxwb mphsr hytyw gmqdq egxyf yncta zdkyi eenin zkygh
yntgb pbpkl azfgy ikkru drzcp aaaci fueqg ywbuu urozm vfgmy
vkwoo zbpyn ezsbg jfynz yvmeo zctiu ghfgu aekds ayicc tkrus
xgbpz cufve lvsjg lklls vefyt onmdk
```

The first thing to be determined would be the size of the blocks. If the key were an $n \times n$ matrix, then n must divide the number of letters in the ciphertext. This ciphertext has 180 letters. There are many possibilities for n , but let us assume that it was encrypted using a 2×2 key. (That's a really good assumption.)

Because such a key encrypts digraphs, we might begin by looking at digraph frequencies.

Here are the digraphs that appear more than once and their frequencies:

Digraph	Frequency
bp	4
yn	4
ct	3
fg	3
fy	3
oz	3
ve	3
wb	3
yi	3
zc	3
aa	2
az	2
ci	2
dk	2
gb	2
gh	2
gm	2
gy	2
hy	2
kl	2
kr	2
ky	2
nz	2
ru	2
uu	2
yt	2
yv	2
yw	2

If we're lucky the most common plaintext digraph th will correspond to (one of) the most common ciphertext digraph(s). BP and YN each appear 4 times in the ciphertext. Let's assume that ciphertext BP corresponds to plaintext th . (Another really good assumption.)

We could try to determine the key or the key inverse. Because we are trying to determine the plaintext, let's try to directly determine the key inverse. We want to find a 2×2 matrix $\begin{bmatrix} e & f \\ g & h \end{bmatrix}$ that is the inverse of the key. If we are correct that $B(2)P(16)$ corresponds to $t(20)h(8)$, then

$$\begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} 2 \\ 16 \end{bmatrix} = \begin{bmatrix} 20 \\ 8 \end{bmatrix}$$

This corresponds to two linear equations:

$$\begin{aligned} 2e + 16f &= 20 \\ 2g + 16h &= 8 \end{aligned}$$

Because this Hill cipher (we assume) encrypts digraphs, the key inverse is a 2×2 matrix. The key inverse has $2^2 = 4$ entries e, f, g , and h that must be determined. We would like to have four equations – two involving e and f and two involving g and h .

If we knew another plaintext/ciphertext digraph correspondence, we would have the other two equations that we need. Perhaps, the next most common ciphertext digraph YN corresponds to the next most common plaintext digraph he. (But, it doesn't.)

We could try assuming that YN corresponds to another common digraph, but here is another technique.

The most common letter that follows plaintext th is e. We might examine the digraphs that follow BP in the ciphertext and assume that the next ciphertext digraph corresponds to plaintext e_. We notice that we have BP KL, BP BP, BP YN, and BP ZC. If we are correct that BP corresponds to th, the second pair of digraphs corresponds to plaintext th th. In each of the other cases, we will assume that the two ciphertext digraphs correspond to th e_. Making this assumption, we should be correct more than half the time.

So, if KL corresponds to e_, $\begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} 11 \\ 12 \end{bmatrix} = \begin{bmatrix} 5 \\ * \end{bmatrix}$ which yields the equation $11e + 12f = 5$. If YN corresponds to e_, $\begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} 25 \\ 14 \end{bmatrix} = \begin{bmatrix} 5 \\ * \end{bmatrix}$ which yields the equation $25e + 14f = 5$. If ZC corresponds to e_, $\begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} 26 \\ 3 \end{bmatrix} = \begin{bmatrix} 5 \\ * \end{bmatrix}$ which yields the equation $26e + 3f = 5$.

Each of these can be solved simultaneously with $12e + 16f = 20$ which was obtained by assuming that BP corresponds to th. All of the solving,

however, is to be done modulo 26. We may use whatever techniques we know for solving systems of linear equations provided that we divide only when division is possible – we can divide by only 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, and 25. We will use *Mathematica* to solve the equations.

```
Solve[2e+16f==20&&11e+12f==5,{e,f},Modulus -> 26]
```

```
{ {e->1,f->6+13 C[1]} }
```

```
Solve[2e+16f==20&&25e+14f==5,{e,f},Modulus -> 26]
```

```
{ {e->1,f->6+13 C[1]} }
```

```
Solve[2e+16f==20&&26e+3f==5,{e,f},Modulus -> 26]
```

```
{ {e->1+13 C[1],f->19} }
```

Each system of congruences has two solutions modulo 26. $e = 1$ and $f = 19$ is common to all of the pairs of solutions. That would happen if in each of these three cases th were followed by $e_$. Let us assume that is the case. (That's another really good assumption.) We could later try the other possibilities if needed.

So, we believe that the key inverse is $\begin{bmatrix} 1 & 19 \\ g & h \end{bmatrix}$.

We have one more congruence: $2g + 16h = 8 \pmod{26}$. It is possible to solve a congruence of the form $ax + by = c \pmod{n}$ provided that the greatest common divisor of a, b , and n also divides c . In our case, the greatest common divisor of $a=2, b=16$, and $n=26$ is 2 which does divide $c=8$. It is necessary to reduce the modulus; remove the factor of 2 to get $g + 8h = 4 \pmod{13}$. Then rearrange the terms to get $g = 4 - 8h \pmod{13}$. Modulo 13, the possible values of h are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12.

For example, if $h = 3$, $g = 6 \pmod{13}$. But, we are ultimately interested in what happens modulo 26. 6 and $6 + 13 = 19$ are congruent mod 13, but they are not congruent mod 26. So, each solution mod 13 becomes two solutions mod 26.

h	$g \pmod{13}$	$g \pmod{26}$
0	4	4, 17
1	9	9, 22
2	1	1, 10
3	6	6, 19
4	11	11, 24
5	3	3, 22
6	8	8, 21
7	0	0, 13
8	5	5, 18
9	10	10, 23
10	2	2, 15
11	7	7, 20
12	12	12, 25

The determinant of the key inverse must be one of 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, or 25 mod 26. So, try each of these pairs of g and h in $\begin{bmatrix} 1 & 19 \\ g & h \end{bmatrix}$ and calculate the determinant mod 26. Again, we use *Mathematica*.

In[8]:= Mod[Det[{{1, 19}, {4, 0}}], 26]

Out[8]= 2

Mod[Det[{{1, 19}, {17, 0}}], 26]

15

Mod[Det[{{1, 19}, {9, 1}}], 26]

12

Mod[Det[{{1, 19}, {22, 1}}], 26]

25

Mod[Det[{{1, 19}, {1, 2}}], 26]

9

Mod[Det[{{1, 19}, {10, 2}}], 26]

20

Mod[Det[{{1, 19}, {6, 3}}], 26]

19

Mod[Det[{{1, 19}, {19, 3}}], 26]

6

Mod[Det[{{1, 19}, {11, 4}}], 26]

3

Mod[Det[{{1, 19}, {24, 4}}], 26]

16

Mod[Det[{{1, 19}, {3, 5}}], 26]

0

Mod[Det[{{1, 19}, {22, 5}}], 26]

3

Mod[Det[{{1, 19}, {8, 6}}], 26]

10

Mod[Det[{{1, 19}, {21, 6}}], 26]

23

Mod[Det[{{1, 19}, {0, 7}}], 26]

7

Mod[Det[{{1, 19}, {13, 7}}], 26]

20

Mod[Det[{{1, 19}, {5, 8}}], 26]

17

Mod[Det[{{1, 19}, {18, 8}}], 26]

4

Mod[Det[{{1, 19}, {10, 9}}], 26]

1

Mod[Det[{{1, 19}, {23, 9}}], 26]

14

Mod[Det[{{1, 19}, {2, 10}}], 26]

24

Mod[Det[{{1, 19}, {15, 10}}], 26]

11

Mod[Det[{{1, 19}, {7, 11}}], 26]

8

Mod[Det[{{1, 19}, {20, 11}}], 26]

21

Mod[Det[{{1, 19}, {12, 12}}], 26]

18

Mod[Det[{{1, 19}, {25, 12}}], 26]

5

The possible key inverses are $\begin{bmatrix} 1 & 19 \\ 17 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & 19 \\ 22 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 19 \\ 1 & 2 \end{bmatrix}$, $\begin{bmatrix} 1 & 19 \\ 6 & 3 \end{bmatrix}$, $\begin{bmatrix} 1 & 19 \\ 11 & 54 \end{bmatrix}$, $\begin{bmatrix} 1 & 19 \\ 22 & 5 \end{bmatrix}$, $\begin{bmatrix} 1 & 19 \\ 21 & 6 \end{bmatrix}$, $\begin{bmatrix} 1 & 19 \\ 0 & 7 \end{bmatrix}$, $\begin{bmatrix} 1 & 19 \\ 5 & 8 \end{bmatrix}$, $\begin{bmatrix} 1 & 19 \\ 10 & 9 \end{bmatrix}$, $\begin{bmatrix} 1 & 19 \\ 15 & 10 \end{bmatrix}$, $\begin{bmatrix} 1 & 19 \\ 20 & 11 \end{bmatrix}$, and $\begin{bmatrix} 1 & 19 \\ 25 & 12 \end{bmatrix}$.

We have reduced the problem to checking 13 possible key inverses. We try to decrypt the ciphertext with each possible inverse. $\begin{bmatrix} 1 & 19 \\ 20 & 11 \end{bmatrix}$ is the correct key inverse.

Other Hill Ciphers

Hill's papers contain techniques that are much more secure than the technique that we have called the Hill cipher. Hill's papers include ciphers that are nonlinear.

One technique used by Hill is to do a (nonlinear) simple substitution cipher – a permutation -- prior to the matrix multiplication. Hill uses the following substitutions:

a	b	c	d	e	f	g	h	i	j	k	l	m	n	o	p	q	r	s	t	u	v	w	x	y	z
5	23	2	20	10	15	8	4	18	25	0	16	13	7	3	1	19	6	12	24	21	17	14	22	11	9

For example, th becomes 24 4 and then

$$\begin{bmatrix} 3 & 7 \\ 5 & 12 \end{bmatrix} \begin{bmatrix} 24 \\ 4 \end{bmatrix} = \begin{bmatrix} 22 \\ 12 \end{bmatrix}$$

v (22) L (12).

Another technique used by Hill is similar to what we did when we went from the multiplicative cipher ($C = mp$) to the affine cipher ($C = mp + b$) by adding a shift. Multiplicative ciphers are linear ciphers; affine ciphers are not linear ciphers. Hill adds a shift to what we have called the Hill cipher. For example, (using a = 1, ..., z = 26) to encrypt h (8) e (5)

$$\begin{bmatrix} 3 & 7 \\ 5 & 12 \end{bmatrix} \begin{bmatrix} 8 \\ 5 \end{bmatrix} + \begin{bmatrix} 6 \\ 20 \end{bmatrix} = \begin{bmatrix} 13 \\ 16 \end{bmatrix}$$

M (13) P (16).

Hill's 1929 and 1931 papers include other generalizations of the Hill cipher.

Size of the Keyspace

Multiplicative ciphers have a very small keyspace; the key must be one of 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25. How large is the keyspace for a Hill cipher?

There are $26^4 = 456976$ 2×2 matrices having entries modulo 26; i.e., each entry must be 0, 1, ..., 25. But, recall that for a matrix to be usable as a key for a Hill cipher the matrix must have an inverse. How many of these 2×2 matrices are invertible? This is answered for $n \times n$ matrices in “On the Keyspace of the Hill Cipher” by Overby, Traves, and Wojdylo in *Cryptologia*, January 2005; there are 157248 possible 2×2 keys.

Hill ciphers use two keys: one key is used for encryption and a second key (the key inverse) is used for decryption. Of course, anyone who knows some elementary linear algebra can construct the key inverse from the key, but the encryption and decryption keys are not the same – except in certain cases. Hill, in his second paper, discusses using involutory matrices (matrices that are self-inverse) as keys.

$$\begin{bmatrix} 0 & 1 & 25 \\ 4 & 22 & 4 \\ 3 & 22 & 4 \end{bmatrix} \text{ is involutory.}$$

Using involutory keys would make encryption and decryption completely symmetric, but this significantly restricts the number of keys (see the previously cited article in *Cryptologia*.)

Hill ciphers with $n \times n$ keys form a group

Encrypting with a Hill cipher and re-encrypting with another key of the same size does not improve security because the Hill ciphers with $n \times n$ keys form a group.

For example, if we encrypted digraphs with a Hill cipher using the key

$\begin{bmatrix} 3 & 7 \\ 5 & 12 \end{bmatrix}$ (which has determinant 1 modulo 26) and then encrypted that

ciphertext using a Hill cipher with key $\begin{bmatrix} 9 & 4 \\ 5 & 7 \end{bmatrix}$ (which has determinant 17

modulo 26), the result would be the same as encrypting once with the

key $\begin{bmatrix} 9 & 4 \\ 5 & 7 \end{bmatrix} \begin{bmatrix} 3 & 7 \\ 5 & 12 \end{bmatrix} = \begin{bmatrix} 47 & 111 \\ 50 & 119 \end{bmatrix} = \begin{bmatrix} 21 & 7 \\ 24 & 15 \end{bmatrix}$ modulo 26. Because “the

determinant of a product is the product of the determinants” (even modulo

26), the determinant of $\begin{bmatrix} 21 & 7 \\ 24 & 15 \end{bmatrix}$ is $17 \times 1 = 17$ modulo 26; so, it is a valid Hill

cipher key.

The point is, you have only one shot at using a Hill cipher – re-encrypting does not improve security.

Was the Hill cipher ever used?

Hill's papers contributed two important ideas to cryptology. First, they freed cryptology from encrypting just single letters and digraphs – they showed that encryption of blocks of more than two letters was possible. And, Hill's papers showed the close connection between cryptology and mathematics. This connection was emphasized by A.A. Albert in an address to the American Mathematical Society in 1941.

But, was the Hill cipher ever used?

Hill's cipher is a nice application of matrices, but matrix multiplication is probably not easily done by soldiers who are in the trenches and watching artillery shells flying overhead.

As a cipher to encrypt digraphs, Hill's cipher is harder to use and weaker than the Playfair cipher.

... Hill's cipher system itself saw almost no practical use ...

... the Hill system has served as a U.S. governmental cryptosystem in only one minor capacity – to encipher the three-letter groups of radio call-signs. *The Codebreakers* by David Kahn

Exercises

1. Use a Hill cipher with key $\begin{bmatrix} 3 & 7 \\ 5 & 12 \end{bmatrix}$ to encrypt the following message.

Agnes Driscoll worked for NSA.

2. The following message was encrypted with a Hill cipher with key $\begin{bmatrix} 3 & 7 \\ 5 & 12 \end{bmatrix}$. Decrypt the message.

ZKYZR QHBDM JMPVX WLCGF MIXGM PKBUZ
FHPCI XZTIW

3. Which of the following matrices can be used as keys for a Hill cipher?

3a. $\begin{bmatrix} 5 & 2 \\ 7 & 3 \end{bmatrix}$.

3b. $\begin{bmatrix} 5 & 12 \\ 15 & 25 \end{bmatrix}$.

3c. $\begin{bmatrix} 20 & 2 \\ 5 & 4 \end{bmatrix}$.

3d. $\begin{bmatrix} 5 & 8 \\ 12 & 3 \end{bmatrix}$.

3e. $\begin{bmatrix} 21 & 13 \\ 7 & 16 \end{bmatrix}$

4. Use a Hill cipher with key $\begin{bmatrix} 2 & 7 & 19 \\ 0 & 5 & 8 \\ 1 & 3 & 7 \end{bmatrix}$ to encrypt the following message: `enigma`.

5. Use a Hill cipher with key $\begin{bmatrix} 5 & 6 & 4 & 1 \\ 2 & 1 & 0 & 3 \\ 1 & 8 & 9 & 2 \\ 2 & 4 & 6 & 7 \end{bmatrix}$ to encrypt the following message: `united states`.

6. Find a 2×2 matrix that can be used as a key for a Hill cipher.

7. What is special about the Hill cipher key $\begin{bmatrix} 5 & 8 \\ 10 & 21 \end{bmatrix}$? Does this make this matrix a good or bad choice for a key?

8. A message is first encrypted with a Hill cipher with key $\begin{bmatrix} 6 & 3 \\ 7 & 8 \end{bmatrix}$ and then encrypted again with key $\begin{bmatrix} 3 & 2 \\ 8 & 5 \end{bmatrix}$. What is the resulting cipher?

9. Known plaintext attack on the Hill cipher. Find the key for the following ciphertext message that was enciphered with a Hill cipher.

VRAAU	OTNLK	NJWVJ	QJXXY	BEOLW	CVRYK	FOYPQ
TWVMP	ALUEA	ACWWE	GB			

The plaintext message begins “The Riddle.”

10. For the very (very) brave – a ciphertext attack on the Hill cipher.

TZZOK	HMOTZ	MOINY	FTWCO	UWINH	CAGZH	AZXME
ICZVH	ZOTWE	IUGGG	AETWE	ICZVH	ZOYKX	ZFAMW
PGWQQ	JTZGT	YRFAI	KTWEI	HIQTN	ZAGVM	YKXZP
GWQQJ	ZCHNE	ITZXG	IKTWE	IVUOZ	XUXBQ	DPTPS
WQZHA	ZXMEI	CZVHZ	OYKXZ	FAMWP	GWQQJ	ELTZQ
POZRF						

11. Another ciphertext attack on the Hill cipher.

xrqsx ibkfy lawcc jrohm ouyyl mrqgi ucscs ahakc
 zwuhg axroc bipwe zatqd eqrmh zgtmv ygoq qlmqd
 kbpyd dqqcj glhka pbkae clxru cuhbg wtetx riymt
 ezdyd dhksj opgia piwzw fmzwa egpgi jpqxn oaady

12. You know that you are intercepting messages that are encrypted with a 2×2 Hill cipher. You are able to trick one of the parties of the communications to send the plaintext digraphs az and za . You are able to determine that az is enciphered as OJ and za is enciphered as YI . Determine the encryption matrix and the decryption matrix.

13. Consider the affine version of the Hill cipher. First encrypt a message by multiplying by the matrix $\begin{bmatrix} 3 & 7 \\ 5 & 12 \end{bmatrix}$ and then adding to the result the matrix $\begin{bmatrix} 6 \\ 20 \end{bmatrix}$. Encrypt again by multiplying by the matrix $\begin{bmatrix} 9 & 4 \\ 5 & 7 \end{bmatrix}$ and adding the matrix $\begin{bmatrix} 3 \\ 17 \end{bmatrix}$. What is the resulting cipher?

14. Consider the affine version of the Hill cipher. Would re-encrypting using this cryptosystem increase security?

15. Would using an involutory key reduce the security of a Hill cipher?