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ABSTRACT 
In this paper we present a new approach for horizontal 
object oriented database fragmentation combined with 
fine-grained object level replication in one step. We build 
our fragmentation/replication method using AI probabilis-
tic clustering (fuzzy clustering). Fragmentation quality 
evaluation is provided using an evaluator function. 
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1.  Introduction 
 
Designing an efficient DOODB system requires fragmen-
tation and allocation techniques capable of handling the 
complex features of the object oriented data model. While 
the design phase could be adapted from the relational 
techniques, this solution is certainly not the most appro-
priate as the OO model is inherently more complex than 
the relational model. In order to cope with the increased 
complexity of the OO model, one can divide class fea-
tures as follows: simple attributes, complex attributes, 
simple methods, complex methods [6]. 
Fragmentation methods for OODB environments, or flat 
data models have been generally considered in [2, 8]. Bel-
latreche et al. [8] propose a method that emphasizes the 
role of queries in the horizontal fragmentation. We have 
already discussed alternative AI clustering methods for 
horizontal fragmentation in OO models with simple and 
complex attributes/methods, without replication, in [9, 10, 
11, 12]. Generally, replication is performed at fragment 
level in all allocation schemes. Synchronous and asyn-
chronous replication are described in [14]. 
 
Contributions 
 
In this paper we propose a method for constructing class 
fragments in an object oriented database with object level 
replication handled directly in the fragmentation step.  

In OODBs, horizontal fragmentation can be carried in two 
steps: primary and derived. In our method, primary and 
derived horizontal fragmentation are performed in a sin-
gle step, similar to [11, 12]. Primary fragmentation groups 
class instances according to a set of query conditions [9] 
imposed on the values of their simple attributes/methods. 
Derived fragmentation takes into account the class rela-
tionships (aggregation, association, complex methods). It 
groups instances of a class in fragments according to the 
fragmentation of the related classes. Generally, there are 
two approaches in derived fragmentation: left order de-
rived fragmentation (parent first) and right order derived 
fragmentation (child first). They differ in the order in 
which two related classes are fragmented. In the left order 
derived fragmentation, the referring (parent) class is 
fragmented first and determines a partitioning of the in-
stance set of the referred (child) class. In the right order 
derived fragmentation, the referred class is fragmented 
first and determines the partitioning of the instances of the 
referring class. 
Objects are modeled in a vector space. Each object is rep-
resented as a vector. We use distance functions for meas-
uring the dissimilarity between any two objects of the 
same class. Objects are placed into fragments according 
to their dissimilarity in respect to a set of relevant user 
queries. Objects are grouped into overlapping fragments 
using a fuzzy clustering method [18].  
For evaluating the results of our fragmentation method we 
propose an evaluation function that expresses how well 
the resulting fragmentation fits the input set of user appli-
cations. 
The paper is organized as follows. The next section of this 
work presents the object data model and the constructs 
used in defining the object database and expressing que-
ries. Section 3 introduces the vector space model we use 
to compare objects, methods for constructing the object 
vectors and similarity metrics over this vector space. Sec-
tion 4 presents our fuzzy clustering fragmentation algo-
rithm. In section 5 we present a fragmentation example 
over a class hierarchy and we evaluate the quality of our 
fragmentation scheme.  
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2.  Data Model 
 
We use an object-oriented model with the basic features 
described in the literature [19]. An OODB is a set of 
classes with all their instances and relationships (inheri-
tance, aggregations, associations). Although we deal here, 
for simplicity, only with simple inheritance, moving to 
multiple inheritance would not affect the fragmentation 
algorithm in any way, as long as the inheritance conflicts 
are dealt with into the data model. There is a special class 
Root that is the ancestor of all classes in the database. 
Thus, in our model, the inheritance graph is a tree. 
An entry point into a database is a metaclass instance [9] 
bound to a known variable in the system. It allows navi-
gation to all classes and class instances of its sub-tree. 
There are usually more entry points in an OODB. Given a 
complex hierarchy H, a path expression P, C1.A1. …An, 
n≥1 denotes a path in the aggregation/association graph 
[9,11]. As presented in [9], a query is a tuple with the 
following structure q=(Target class, Range source, Quali-
fication clause). 
 
3.  Vector Space Modeling 
 
3.1 Primary Fragmentation Modeling 
 
We denote by Q={q1 ,…, qt} the set of all queries in re-
spect to which we want to perform the fragmentation. Let 
Pred={p1, …, pq} be the set of all atomic predicates Q is 
defined on. Let Pred(C)={p∈Pred| p imposes a condition 
to an attribute of class C or of its parent}. Given the 
predicate p ≡ C1.A1. …An θ value, p∈Pred(Cn), where 
class Ci is the complex domain of  Ai-1, i=2..n. Thus, given 
two classes C and C’, where C’ is subclass of C, 
Pred(C’)⊇Pred(C) [9]. 
We construct the object condition matrix for class C, 
OCM(C) ={aij, 1≤i≤|Inst(C)|, 1≤j≤|Pred(C)|}, where 
Inst(C) ={O1, … Om} is the set of all instances of class C 
(objects),  Pred(C) = {p1, …, pn}: 
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Each line i in OCM(C) is the object condition vector of 
Oi, where Oi∈Inst(C). 
 
3.2 Attribute Induced Derived Fragmentation Model-
ing 
 
We have captured so far all characteristics of simple at-
tributes and methods. We need to express the class rela-
tionships in our vector space model. We first model the 
aggregation and association relations. 
Given two classes CO (owner) and CM (member), where 
CM is the domain of an attribute of CO, a path expression 
traversing this link navigates from instances of CO to one 
or more instances of CM. In the case of left derived frag-
mentation CO will be fragmented first, followed by CM. In 
the right derived fragmentation variant the order in which 

the two classes are fragmented is reversed. Each of the 
two strategies is suitable for different query evaluation 
strategies. For example, in reverse traversal query evalua-
tion strategy, the right derived fragmentation variant gives 
the best results. We assume here, for space reasons, that 
right derived fragmentation method is used. However, 
both: the algorithm and the vector space model remain the 
same when considering left derived fragmentation order.   
In right derived fragmentation method, when fragmenting 
CO we should take in account the fragmentation of CM 
[12]. Objects of a fragment of CO should aggregate as 
much as possible objects from the same fragment of CM. 
Let {F1, …Fn} be the fragments of CM. We denote by 
Agg(Oi, Fj)={Om | Om∈Fj, Oi references Om } the set of 
objects in fragment Fj referred by Oi.  
Given the set of fragments for CM, we define the attribute-
link induced object condition vectors for derived fragmen-
tation as adi = (adi1, adi2, … , adin), where each vector 
component is expressed by the following formula: 

( ) njFOAggad jiij ,1,),(sgn ==  (2)

For an object Oi∈Inst(CO) and a fragment Fj of CM, adij is 
1 if Oi is linked to at least one object of Fj and is 0 other-
wise. Two objects are candidates to be placed in the same 
fragment of CO in respect to Fj if they are both related in 
the same way to Fj. 
 
3.3 Method Induced Derived Fragmentation Modeling 
 
In the following paragraphs we model the class relation-
ships induced by the presence of complex methods. Given 
a class with complex methods C (owner) that has to be 
fragmented, we need to take in account the fragmentation 
of classes referred by its complex methods. We express 
method reference dependencies in our vector space.  
We denote by MetComplex(C) = {mi | mi is a complex 
method of C} – the set of all complex methods of class C.  
Let SetCRef(m,C)={CR | C≠ CR, CR is referred by method 
m∈MetComplex(C)} be the set of classes referred by the 
complex method m of class C. For a given instance of a 
class C with complex methods we denote as: 
SetORef(m, Oi, CR)={O’

r∈Inst(CR) | CR∈SetCRef(m,C), 
m∈MetComplex(C), O’

r is referred by method m } – the 
set of instances of  class CR, referred by the complex 
method m of class C, called by object Oi.  
For each pair (mk,CR)∈{mk∈MetComplex(C)}x Set-
CRef(mk,C) we quantify the way each instance of C refers 
- through complex methods - instances from fragments of 
CR. Given a class CR referred by a complex method mk of 
class C, and the fragments {F1,…Fn} of class CR, we de-
fine the method-link induced object condition vectors for 
derived fragmentation. For each instance Oi of C let mdi= 
(mdi1, mdi2, …, mdin) be the method-link induced object 
condition vector. Each vector component is defined by the 
following formula: 
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Each mdij evaluates to 1 when Oi∈Inst(C) refers objects 
from fragment Fj of class CR and 0 otherwise. We obtain 
one method-link induced object condition vector for each 
object Oi and each pair (mk,CR) in {mk∈MetComplex(C)}x 
SetCRef(mk,C). 
 
3.4 Derived Fragmentation Modeling 
 
As the number of elements in {mk∈MetComplex(C)}x 
SetCRef(mk,C) is usually large we need to use some heu-
ristics in order to retain only the pairs with significant 
impact in the fragmentation. In order for a pair (mk, CR) to 
be kept it should satisfy the following combined restric-
tions: (a) The number of calls to the method mk should be 
significant compared to the contribution brought by all 
method calls made by applications running on the data-
base; (b) The number of instances of CR referred by the 
method mk should be significant compared to the number 
of instances of all classes generally referred by the appli-
cations. The above conditions are expressed in the follow-
ing formula (significance factor): 
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In equation (4) the first factor gives the ratio between the 
number of calls to method mk and the number of calls of 
all complex methods of class C. The second factor gives 
the ratio between the number of CR instances referred by 
mk and the number of all objects referred by mk. In reality 
the actual method parameters would normally influence 
the set of objects referred by the method. Even more, the 
set of referred objects could be as well influenced by the 
internal state of the object. However, tracking all the pos-
sible combinations is computationally intractable,  even in 
simple situations. The statistical heuristic proposed in (4) 
is still manageable and helps reducing the problem space 
dimensions. 
We capture the semantic of both primary and derived 
fragmentation phases into one single step. We unify the 
object condition vector, the attribute-link and method-link 
induced object condition vectors for each object Oi of the 
class C, and we obtain the extended object condition vec-
tor. Each extended object condition vector quantifies all 
the information needed for fragmentation: the conditions 
imposed on the object’s state and the relationships of the 
object with instances of related classes. 
If the class C is related with classes CA1, CA2,…, CAp by 
means of complex attributes, and with classes CM1, CM2, 
…, CMr by means of complex methods, then the extended 
object condition vector aei for object Oi∈Inst(C) is ob-
tained by appending the p attribute-link induced object 
condition vectors and the mc=|{mk∈MetComplex(C)}x 
SetCRef(mk,C)| method-link object condition vectors to 

the object condition vector of Oi. However, as we have 
already mentioned above, we are using the significance 
factor to filter out non-relevant pairs (mk, CR) and vectors 
derived from them. The significance threshold is an input 
parameter for the fragmentation algorithm and its value is 
experimentally determined.  
We denote by EOCM(C) the extended object condition 
matrix for class C. 
 
3.5 Dissimilarity (distance) between objects 
 
The aim of our method is to group into a cluster those 
objects that are similar to one another. Distance between 
objects is computed using the following metrics: 
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We use dE and dM in (5) to measure how distant two ob-
jects are.  
 
4. Fuzzy Clustering Based Fragmentation 
 
Fuzzy c-means (FCM) is a method of clustering which 
allows one object to belong to one or more clusters. The 
algorithm we propose for horizontal fragmentation is de-
scribed in the following: 
Algorithm Fuzzy-c-meansFrag is 
Input: Class C, Inst(C) to be fragmented, the 
distance function dist:Inst(C)xInst(C)→R, 
m=|Inst(C)|, 1<k≤m desired number of fragments, 
EOCM(C), z the fuzziness factor, ε_prob the prob-
ability matrix change threshold, MaxSteps maxi-
mum number of iterations, MinMembershipProb 
minimum membership probability, ε_centr threshold 
for centroid equality. 
Output: The set of clusters F={F1,…,Ff}, f ≤ k.  
Var:  
 U=[ui
Begin 

j] the probability matrix, i=1..m, j=1..k. 

 InitRandomProbMatrix(U(0))  
 // or InitGuidedProbMatrix(EOCM(C),U(0),k); 
f:=k; Fj:=∅, j=1..f; p:=1; 
Repeat 

 //calculate the centroids Centr(p)=[cj] with U(p)

  For j:=1 to f do  
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   End For; 
   RedIdentCentr(Centr(p), U(p), f, ε_centr);
   For i:=1 to m do // update U(p) using U(p-1) 
    For j:=1 to f do 
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    End For; 
   End For; 
   p = p+1; 
 Until (max{|u(p)ij- u(p-1)ij|}≤ε_prob) or 
      (p ≥ MaxSteps); 
 For i:=1 to m do 
   For j:=1 to f do 
    If u(p)ij ≥ MinMembershipProb then  
     Fj = Fj∪{Oi}; 
   End For;  
 End For;  
End. 
 
The algorithm generates the membership probability of 
each object of C to all clusters. It starts with an initial 
probability matrix U(0). An element uij of this matrix ex-
presses the membership probability of object Oi to the 
cluster Fj. The sum of membership probabilities for an 
object to all clusters must be equal to one – the member-
ship probability matrix is standardized. The probability 
matrix is optimized in an iterative manner. Each iteration 
starts by determining the centers of each fuzzy cluster,  
Centr={c1,…, cf} – line (a1) in the algorithm. Next we 
adjust the membership probabilities to the clusters repre-
sented by the new centroids – line (a2) in the algorithm.  
This iterative process aims to minimize the following ob-
jective function: 
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where z is the fuzziness factor as described in [18]. The 
iterative process stops when changes in the probability 
matrix between two consecutive steps is insignificant 
(bellow a threshold value, ε_prob). The J function gener-
ally has saddle points and the generated probability series 
uij are not always convergent. To deal with this, we limit 
the number of iterations to MaxSteps. 
At the end of the iterative process we build the horizontal 
fragments for the class C. We assign each object to all 
clusters with a membership probability exceeding Min-
MembershipProb. We chose 1/f (f is the number of result-
ing clusters) as threshold value. 
If two centroids become equal in the iterative process that 
means that their clusters would contain similar objects 
(these are degenerated clusters). As they do not have a 
distinct semantic for the fragmentation, we merge all de-
generated clusters with equal centroids. The resulting 
cluster will accumulate all objects of the source degener-
ated clusters by summing their membership probabilities. 
Degenerated clusters may appear when one initially re-
quests more fragments than can be separated in our mod-
eled vector space.  
The initial selection of the probability matrix obviously 
influences the algorithm evolution. We propose two 
methods for initializing the probability matrix. The first 
one is implemented in the InitRandomProbMatrix proce-
dure and generates a random standardized membership 
probability matrix. The second one is implemented in 
InitGuidedProbMatrix and generates the initial probabil-
ity matrix as follows. It selects between the class in-
stances the set of f most dissimilar ones (dissimilarity is 

measured as distance between objects). These objects are 
considered to be the initial centroids (Centr). Each object 
from Centr is assigned a membership probability of 1 to 
its cluster, and 0 to other clusters. For every other object 
we determine the set of the closest, equally distant cen-
troids according to the distance function. Let cnum be the 
number of these centroids. We assign equal membership 
probabilities ( 1/cnum ) to each corresponding cluster. We 
proceed in this manner in order to lower the risk of ob-
taining degenerated clusters. 
 
5.  Results and Evaluation 
 
In this section we illustrate the experimental results ob-
tained by applying our fragmentation scheme on a test 
object database. Given a set of queries, we first obtain the 
horizontal fragments for the classes in the database; af-
terwards we evaluate the quality and performance of the 
fragmentation results. The problem with the evaluation 
method is that it is difficult to quantify a fragmentation 
result without allocating the fragments to the nodes of a 
distributed system. On the other side, the allocation it’s a 
very complex process on its own. As resolving the alloca-
tion problem in the general case is not a trivial task, we 
need a simplified allocation model, yet a valid one. We 
consider a distributed system running database appli-
cations (queries). All applications run with different fre-
quencies on different nodes of the system. We chose to 
allocate each fragment to the node where it is most 
needed (accessed). 
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Figure 1 The database class hierarchy and   

aggregation/association graph 
 
Our sample object database represents a reduced univer-
sity database. The inheritance hierarchy and a trimmed 
down version of the aggregation/ association graph are 
shown in Figure 1. The links between Doc and Person 
should be inherited by all subclasses of Person and Doc. 
This is graphically represented in the figure by the dotted 



arrows. Similar inherited links are present for other 
classes in this graph (links not represented here). The mo-
tivation for aggregation/association inheritance is pre-
sented in [11]. We use the same set of 14 relevant queries 
for guiding the fragmentation process, as in [11]. 
For measuring the fragmentation quality we determine the 
cost of remote accesses combined with the cost of local 
irrelevant accesses to each fragment. Remote accesses are 
made by applications running on a given node and access-
ing objects that are not stored on that node. Local irrele-
vant accesses are given by local processing incurred when 
a query accesses a fragment. Each access to a fragment 
implies a scan to determine objects that satisfy a condi-
tion. Irrelevant local access measure the number of local 
accesses to objects that will not be returned by the query. 
Intuitively, we want that each fragment be as compact as 
possible and contain only objects accessed by queries 
running on the fragment’s node.  
We introduce the following measure for calculating the 
fragmentation quality: 

FPE(C) = FEM + FER (7)
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AccC,t represents the set of objects of class C accessed by 
query t. freqts is the frequency of query t running on site s. 
In (8) s is the site where Fi is located. M is the number of 
fragments for class C, T is the number of queries and S is 
the number of sites. The FEM term calculates the local 
irrelevant access cost for all fragments of a class. For a 
fragment and a query the irrelevant objects are those that 
a) are not accessed by the query or b) are accessed by the 
query but are replicas of objects from other fragments 
already considered in the evaluation. This comes from the 
natural fact that, when evaluating a query, will be referred 
only one replica of every object needed by that query. 
FER calculates the remote relevant access cost for all 
fragments of a class. The second factor expresses the 
number of remote accessed objects, for a given query t 
running on a site s. For a given query running on a given 
node, FragCover calculates an optimal covering scheme 
of the set of remote accessed objects, formed only with 
remote fragments, so that only one replica of each remote 
object is considered. 
The FER term of the quality measure also reflects the 
fragmentation behavior in the presence of complex aggre-
gation/association hierarchies. Minimizing the navigation 
degree from a fragment to its neighbor fragments (frag-
ments of the related classes) helps reducing inter-node 
data transportation when evaluating queries. The Frag-

Cover factor includes, but is not limited to, the order of 
magnitude of the navigation degree for the fragments of a 
given class when evaluating queries over its fragments. 
Globally, FPE measures how well fragments fit the object 
sets requested by queries. The fragmentation is better 
when the local irrelevant costs and the remote relevant 
access costs are smaller.  
By applying the algorithm we obtain the following repli-
cation degrees on each class: 
 
Class / 
Method 

No of 
Instances

Euclid 
Guided 

Euclid 
Random 

Manhattan
Guided 

Manhattan
Random 

Dept 12 0% 0% 0% 0% 
Grad 13 15% 7% 15% 15% 
OrgUnit 5 20% 20% 20% 40% 
Prof 20 0% 0% 0% 0% 
Researcher 6 0% 20% 0% 0% 
Staff 5 0% 0% 0% 0% 
Undergrad 61 39% 31% 32% 9% 
 Average 12% 13% 11% 11% 

Table 1. Replication percentage for all classes. 
 
Using the given query access frequency, the fragments 
above are allocated to 4 distributed sites. For space rea-
sons we do not provide here the application frequencies. 
A similar example is presented in [11]. 
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Figure 2 Comparative FPE values: fuzzy clustering, 

centralised, total replicated databases. 
 

We qualitatively compare the results of our fragmentation 
method with a centralized and a full replicated database in 
Figure 3. The centralized version of the database is allo-
cated to node S1, while in the replicated case each node 
holds a copy of the entire database. 
As it can be seen, all the fuzzy fragmentation methods 
with any of the distance measures generally perform bet-
ter than the centralised case. 
There are two versions of results for each distance meas-
ure. One of them is the guided approach where the initial 
centroids are the most dissimilar objects of the class. This 
choice influences the initial probability matrix. The other 
approach for each measure is to take a random standard-
ised initial membership probability matrix. As seen in the 
figure, the guided versions have slightly worse scores. 



This is because the fuzzy behaviour of the algorithm is 
altered by the initial choice. On the other side, the random 
initial probability matrix yields fluctuant results and is 
impossible to know in advance if the obtained fragmenta-
tion is good or not. Without a reference average cost it is 
impossible to say if a FPE cost obtained by the random 
run is good or not. A good alternative is to first apply the 
guided method in order to obtain a good average result. 
Afterwards, the random fuzzy version of the algorithm 
could be run several times, as long as the obtained FPE 
values are improved. This approach follows the general 
idea that a fuzzy clustering algorithm must be repeatedly 
applied and the best result be retained. The results for 
RandomEuclid and RandomManhattan in Figure 2 are the 
improved results after running the random algorithms 
several times. 
In Figure 3 we compare the results of the fuzzy horizontal 
fragmentation algorithm with those obtained by using the 
k-means clustering algorithm. The Primary algorithms do 
not take in consideration the complex class relationships. 
The complex versions of the k-means algorithm express 
and handle all inter-class relationships, but without repli-
cation [12]. We can see that the fuzzy fragmentation algo-
rithm performs better in all its versions compared to the 
k-means clustering algorithm. 
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Figure 3 Fuzzy fragmentation vs k-means primary 

and k-means primary+derived fragmentations. 
 
This is due to the fine replication obtained by assigning 
the same object to multiple fragments when needed. The 
most important improvement obtained by using the fuzzy 
clustering algorithm is the fact that we can quantify the 
degree of membership of one object to all clusters. When 
an object is needed in more than one cluster its member-
ship degree will be high for all those fragments. This is an 
important achievement if we think that fragmentation is 
driven by user applications and users are not required to 
express queries with very well separated results so that 
fragmentation be an easy task. 
 
6.  Conclusions 
 
We presented in this paper a new approach in horizontal 
distributed object oriented  database fragmentation. Our 

fragmentation method uses the c-means fuzzy clustering 
method for grouping class instances into fragments. When 
fragmenting a class instance set, often an object is candi-
date to be placed in multiple fragments, due to the nature 
of the user applications accessing data. Traditional algo-
rithms take a sharp decision in this case, by placing the 
conflicting objects in only one of the fragments. We claim 
that taking in consideration the fuzzy aspect of object to 
fragment membership and placing an object in multiple 
fragments, when needed, might help improve perform-
ance of the obtained fragmentation scheme. We compared 
our results to those obtained by applying the traditional 
k-means clustering algorithm – that generates non-
overlapped clusters. The obtained fragmentation quality is 
better than the results of traditional non-intersecting 
fragmentation schemes.  
As future work, we plan to improve the applicability of 
our combined fragmentation with fine replication scheme. 
The need to apply several times the fragmentation algo-
rithm in order to improve the intermediary results could 
possible be eliminated by using a different heuristic for 
the initial probability matrix. 
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