
K-Anonymization Incremental Maintenance
and Optimization Techniques

Traian Marius Truta
Department of Computer Science

Northern Kentucky University
Highland Heights, KY 41099, USA

001-859-572-7551

trutat1@nku.edu

Alina Campan
Department of Computer Science

Babes-Bolyai University
Cluj-Napoca, RO-400084, Romania

0040-264-405327

alina@cs.ubbcluj.ro

ABSTRACT
New privacy regulations together with ever increasing data
availability and computational power have created a huge interest
in data privacy research. One major research direction is built
around k-anonymity property, which is required for the released
data. Although many k-anonymization algorithms exist for static
data, a complete framework to cope with data evolution (a real
world scenario) has not been proposed before. In this paper, we
introduce algorithms for the maintenance of k-anonymized
versions of large evolving datasets. These algorithms
incrementally manage insert/delete/update dataset modifications.
Our results showed that incremental maintenance is very efficient
compared with existing techniques and preserves data quality.
The second main contribution of this paper is an optimization
algorithm that is able to improve the quality of the solutions
attained by either the non-incremental or incremental algorithms.

Categories and Subject Descriptors
K.4.1 [Computers and Society]: Public Policy Issues – privacy.
I.5.3 [Pattern Recognition]: Clustering – algorithms.

General Terms
Algorithms, Performance, Security.

Keywords
Privacy, k-anonymity, incremental, optimization, clustering.

1. INTRODUCTION
To protect the privacy of individuals in the information era is
challenge that our society has just begun facing. More and more
microdata (datasets where each tuple belongs to an individual
entity) are collected by different agencies. Some of these
microdata need to be released, for various purposes, to other
parties in a modified form (without the direct identifying

information such as SSN, Name, etc.). But even altered this way,
these datasets could still present vulnerabilities that can be
exploited by intruders, i.e. persons whose goals are to identify
specific individuals and to use the confidential information they
discover for malicious purposes. The high volume and availability
of released datasets together with ever increasing computational
power made the protection against those vulnerabilities an
increasingly difficult task.

There are several regulations related to the use and the disclosure
of confidential information [6, 8]. All these regulations, together
with the necessity of collecting personal information, have
funneled a huge interest in privacy research. Techniques to avoid
the disclosure of confidential information exist in the literature
[22]. Among them, the k-anonymity property required for the
released microdata was recently introduced [17, 18] and
extensively studied [2, 11, 21, etc.]. This property requires that in
the released microdata every tuple will be indistinguishable from
at least (k-1) other tuples with respect to a subset of attributes
called quasi-identifier attributes.

Various k-anonymization algorithms exist, which generally
proceed by using generalization and suppression [17, 19]. Besides
ensuring k-anonymity property, these algorithms must also
consider minimizing one or more cost metrics between initial and
released microdata. Of particular interest are the cost metrics that
quantify the information loss [3, 5, 14, 20]. Although producing
the optimal solution for the k-anonymity problem w.r.t. many
proposed cost measures has been proved to be NP-hard [15], there
are several polynomial algorithms that produce good solutions for
the k-anonymity problem for real life datasets [1, 3, 10, 11, etc.].

Contributions All mentioned k-anonymization approaches
assume that the processed microdata sets are static. Nevertheless,
large microdata sets containing private information are time-
evolving, meaning that new data are collected and added, and old
data are purged. When new k-anonymized versions of such a
dataset are prepared for release, the current solution is to re-
process the entire dataset, from scratch, without relying on
previous releases of the dataset. However, processing a large
dataset to achieve k-anonymity is time-consuming.

We propose in this paper an incremental updating technique for
the maintenance of k-anonymized versions of large evolving
datasets. Essentially, the proposed technique produces a k-
anonymized version of a dataset IM ∪ ∆+M − ∆−M, starting from
a previous k-anonymized release for the dataset IM, which is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’07, March 11-15, 2007, Seoul, Korea.
Copyright 2007 ACM 1-59593-480-4/07/0003…$5.00.

updated to include the new data in the increment dataset ∆+M and
to remove the obsolete dataset ∆−M. The anonymization process
tries to minimize information loss. As our experimental results
show, for small size datasets ∆+M / ∆−M, w.r.t. the initial dataset
IM size, the incremental updating process is far more efficient
than to re-process the final dataset IM ∪ ∆+M − ∆−M. Also, the
quality of the result remains at about the same level for our
approach as for a non-incremental one.

Several approaches have been proposed to model and solve k-
anonymization as a clustering problem [1, 3]. Our incremental
updating technique continues on this direction, i.e. it uses ideas
from the clustering area. We evaluate the performance of our
method by comparing the results it produces against the results
provided by the static (non-incremental) k-anonymization method
presented in [3]. While a similar updating method in case of only
insertions has very recently been introduced [4], a complete
maintenance framework of k-anonymized microdata that manages
insert/delete/update modifications has not, to our knowledge, been
reported anywhere.

An equally important contribution we present in this paper is an
optimization algorithm that is able to improve the solutions
attained by either the non-incremental algorithm [3] or the
incremental algorithm we propose. The optimization process is
highly efficient, as our experiments have shown.

The paper is structured as follows. Section 2 introduces the
concepts and notations we use along the paper. Section 3 presents
the incremental I3M+ and I3M- algorithms for maintaining
masked microdata when inserts and deletes are performed in the
initial microdata. Section 4 describes the optimization algorithm
proposed for improving the quality of the masked microdata.
Section 5 reports experimental results for incremental and
optimization algorithms. The paper ends with conclusions and
future work directions in Section 6.

2. CONCEPTS AND NOTATIONS
Let IM be the initial microdata and MM be the released (a.k.a.
masked) microdata. IM consists in a set of tuples over an attribute
set. These attributes are classified into the following three
categories:

 I1, I2,..., Im are identifier attributes such as Name and SSN
that can be used to identify a record.

 K1, K2,…, Kn are key or quasi-identifier attributes such as
ZipCode and Age that may be known by an intruder.

 S1, S2,…, Sr are confidential or sensitive attributes such as
PrincipalDiagnosis and ICD9Code that are assumed to be
unknown to an intruder.

While the identifiers attributes are removed from the published
microdata, the quasi-identifier and confidential attributes are
usually released to the researchers. A general assumption, as
noted, is that the values for the confidential attributes are not
available from any external source. This assumption guarantees
that an intruder can not use the confidential attributes values to
increase his/her chances of disclosure. Unfortunately, an intruder
may use record linkage techniques between quasi-identifier
attributes and external available information to glean the identity
of individuals from the masked microdata. To avoid this

possibility of disclosure, one frequently used solution is to modify
the initial microdata, more specifically the quasi-identifier
attributes values, in order to enforce the k-anonymity property.

Definition 1 (k-anonymity property): The k-anonymity property
for a masked microdata (MM) is satisfied if every combination of
quasi-identifier attribute values in MM occurs k or more times.

Generalization of the quasi-identifier attributes is one of the
techniques widely used for k-anonymization. It consists in
replacing the actual value of an attribute with a less specific, more
general value that is faithful to the original [19].

Initially, this technique was used for categorical attributes and
employed predefined (static) domain and value generalization
hierarchies [19, 17, 11, 9, 12]. Generalization was extended for
numerical attributes either by using predefined hierarchies [9] or
a hierarchy-free model [11].

For categorical attributes we used generalization based on
predefined hierarchies at the cell level [12]. We denote by HC the
hierarchies (domain and value) associated to the categorical
quasi-identifier attribute C. For numerical attributes we use the
hierarchy-free generalization [11], which consists in replacing the
set of values to be generalized to the smallest interval that
includes all the initial values. For instance, the values: 35, 38, 36
are generalized to the interval [35-38]. This approach is best
suited to solve the k-anonymity problem using clustering
methods, because the set of clusters are initially created, and the
generalization occurs afterwards at the cluster level, and as
needed for each individual cluster.

The central idea in employing clustering to solve the k-
anonymization problem is as follows. A clustering method is
applied on microdata, w.r.t. the quasi-identifier attributes, and the
tuples in each of the resulted clusters are generalized to a common
tuple. To ensure that k-anonymity is correctly enforced, two
constraints are required when the clustering process is performed.
First, each resulted cluster must have at least k elements. If it
does, the subsequent generalization of the cluster elements to a
common tuple ensures that in the released microdata each tuple
becomes indistinguishable from at least (k-1) other tuples.
Second, the clustering method must act towards minimizing the
information loss. The clusters should be formed such that the
information lost by generalizing each group of tuples to a
common value will be as low as possible. There are different
ways to define information loss in the context of k-anonymization
by clustering [1, 3].

Next, we formally introduce the k-anonymization by clustering
problem, we explain how generalization of tuples in a cluster is
performed, and we describe the information loss measure we use.

Definition 2: ([3]) Let IM be the initial microdata set. The k-
anonymization by clustering problem is to find a partition S =
{cl1, cl2, … , clv} of IM, where clj ⊆ IM, j=1..v, are called clusters

and: =
=
U
v

j
jcl

1
IM ; =I ji clcl ∅, i, j=1..v, i≠j ; |clj | ≥ k, j=1..v ;

∑
=

v

j
jclnLossInformatio

1
)(is minimized (the InformationLoss

measure for a cluster is introduced in Definition 4).

The k-anonymization of the initial microdata must be conducted
to preserve data usefulness and minimize information loss. In
order to achieve this goal, we generalize each cluster to the least
general tuple that represents all tuples in that group. We call
generalization information for a cluster the minimal covering
tuple for that cluster, and we define it as follows.

Definition 3: Let cl = {r1, r2, …, rq} ∈ S be a cluster, KN = {N1,
N2, ..., Ns} be the set of numerical quasi-identifier attributes and
KC = {C1, C2,,…, Ct} be the set of categorical quasi-identifier
attributes. The generalization information of cl, w.r.t. quasi-
identifier attribute set K = KN ∪ KC is the “tuple” gen(cl), having
the scheme K, where:

 For each categorical attribute Cj ∈ K , gen(cl)[Cj] = the
lowest common ancestor in HCj of {r1[Cj], r2[Cj], … ,
rq[Cj]};

 For each numerical attribute Nj ∈ K , gen(cl)[Nj] = the
interval [min{r1[Nj], r2[Nj], … , rq[Nj]}, max{r1[Nj], r2[Nj],
… , rq[Nj]}].

For cluster cl, its generalization information gen(cl) is the tuple
having as value for each quasi-identifier attribute, numerical or
categorical, the most specific common generalized value for all
that attribute values from cl tuples. In MM, each tuple from
cluster cl will be replaced by gen(cl).

To quantify the information loss caused by generalizing a cluster
to a common tuple we use the measure introduced in [3].

Definition 4: Let cl ∈ S be a cluster, gen(cl) its generalization
information and K = {N1, N2, .., Ns, C1, C2, .., Ct} the set of quasi-
identifier attributes. The information loss caused by generalizing
cl tuples to gen(cl) is:

IL(cl) = || cl ⋅ +

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
∑
=

∈∈

s

j
j

r
jr

j

NrNrsize

Nclgensize

1][max],[min

]))[((

IMIM

⎟
⎟

⎠

⎞Λ
+∑

=

t

j C

j

j
Hheight

Cclgenheight

1)(
])))[(((

where:

 |cl| denotes the cluster cl cardinality;

 size([i1, i2]) is the size of the interval [i1, i2] (the value i2-i1);

 Λ(w), w∈HCj is the subhierarchy of HCj rooted in w;

 height(HCj) denotes the height of the tree hierarchy HCj.

Definition 5 ([3]): Total information loss for a solution S = {cl1,
cl2, … , clv} of the k-anonymization by clustering problem,
denoted by IL (S), is the sum of the information loss measure for
all the clusters in S.

3. THE INCREMENTAL MAINTENANCE
OF MASKED MICRODATA ALGORITHM
(I3M ALGORITHM)
As expressed by Definition 4, the information loss measure
penalizes each tuple with a cost proportional with how “far” the
tuple is from the cluster generalization information. Intuitively,
smaller the clusters in a solution are and more similar the tuples in
those groups will be, then less information will be lost. So, the
desideratum is to group together the most similar objects (i.e. that
cause the least possible generalization) in clusters with
cardinalities as close as possible to k. A greedy algorithm for the
k-anonymization by clustering problem can be found in [3].

We describe next the algorithms for the incremental maintenance
of masked microdata MM, when IM is modified by insert/
delete/update operations. Of course, k-anonymizing the modified
microdata is possible by re-applying on the entire modified
dataset the algorithm initially used for masking. But this process
is time-consuming. The incremental algorithm we propose runs
much faster, especially for small modification amounts, and it
does not lose significantly in the quality of the solution it
produces.

We present, first, the case when only inserts are being performed,
then the case when only deletions are made. Updates can be
managed as deletion of old tuples values followed by insertion of
their new values (algorithm I3M-, then I3M+).

3.1 Maintaining MM when inserting
Let S = {cl1, cl2,…, clv} be a solution for the k-anonymization by
clustering problem, for the microdata IM. The incremental dataset
∆+M is subsequently added to IM. The problem is to efficiently
update S to S’ = {cl’1, cl’2,…, cl’v’} that ensures k-anonymity for
IM ∪ ∆+M .

The solution to this problem is straightforward. Each tuple r in
∆+M is added to that cluster in S that, increased with r, will
produce the minimum increase of total information loss. The
function FindBestCluster, not explicitly described in Figure 1,
identifies that optimal cluster for an tuple r, denoted by cl’u*.
When, due to multiple insertions, a cluster cl’u* grows bigger than
2⋅k elements, that cluster will be split in two, not arbitrarily, but in
a greedy manner that tries to minimize total information loss. The
split procedure is described in function Split2kCluster, Figure 1.
Figure 1 presents the I3M+ algorithm for maintaining k-
anonymity for MM when new records are added.

Split2kCluster is inspired, though adapted, from hierarchical
divisive clustering algorithms [7], for splitting the cluster cl’u*.
The tuple that reduces most the information loss for the cluster
cl’u* when deleted from cl’u* is chosen as seed for a new cluster
cl’new. Tuples are transported one at a time from the cluster to be
split to the new cluster until cl’new has enough (k) tuples. The
tuple to be moved between the two clusters is chosen to minimize
the information loss cumulated for cl’u* and cl’new.

Algorithm I3M+ is
Input IM – microdata; ∆+M – new microdata;

S={cl1,cl2,…,clv} a solution for the k-
anonymization by clustering problem for
IM;

Output S’={cl’1,cl’2,…,cl’v’} a solution for the k-
anonymization by clustering problem for IM
∪ ∆+M.

S’ = S;
For every r ∈ ∆+M do
 cl’u* = FindBestCluster(r, S’);
 cl’u* = cl’u* ∪ {r};
 If |cl’u*| ≥ 2⋅k then
 Split2kCluster(S’, cl’u*);
 End If;
End For;
End I3M+.

Function Split2kCluster(S’, cl’u*) is
 cl’new = ∅; // a new empty cluster;
 While | cl’new | < k do
 /* Transfer from cluster cl’u* to cluster
 cl’new the tuple (among the tuples
 in cl’u*) that minimizes the sum of
 information loss for the two clusters */
 bestEntity = null;
 sumInfoLoss = ∞;
 For every r ∈ cl’u* do
 If IL(cl’u* −{r}) + IL(cl’new ∪{r})

 < sumInfoLoss then
 bestEntity = r;
 sumInfoLoss = IL(cl’u* −{r}) +

 IL(cl’new ∪{r});
 End If;
 End For;
 cl’u* = cl’u* − {bestEntity};
 cl’new = cl’new ∪ {bestEntity}
 End While;
 S’ = S’ ∪ {cl’new};
End Split2kCluster;

Figure 1. The I3M+ Algorithm

3.2 Maintaining MM when deleting
Let S = {cl1, cl2,…, clv} be a solution for the k-anonymization by
clustering problem, for the microdata IM . Obsolete tuples in
dataset ∆−M are subsequently deleted from IM . The problem is to
efficiently update S to S’ = {cl’1, cl’2,…, cl’v’} that ensures k-
anonymity for IM − ∆−M .

The algorithm proceeds as follows. Each tuple r in ∆−M is deleted
from the cluster currently containing it. The clusters that remain
with less than k elements are dispersed into the others, in order to
not lose k-anonymity for IM − ∆−M. The spreading procedure for
a cluster cl’j is described in function DisperseLessKCluster (see
Figure 2). Each element r of cl’j is relocated to another cluster, the
one that, increased with r, will produce the minimum increase of
the total information loss. If, in the spreading and relocation
process for a cluster, other cluster grows bigger then 2⋅k elements,
that cluster will be split in two. The same procedure
Split2kCluster as in I3M+ is used with that end in view. Figure 2
presents the I3M− algorithm for maintaining k-anonymity for
MM when obsolete tuples are deleted.

Algorithm I3M- is
Input IM – microdata; ∆−M – obsolete microdata;

S={cl1,cl2,…,clv} a solution for the k-
anonymization by clustering problem for
IM;

Output S’={cl’1,cl’2,…,cl’v’} a solution for the k-
anonymization by clustering problem for IM
− ∆−M.

S’ = S;
For every r ∈ ∆−M do
 // cl’owner denotes the cluster containing r
 cl’owner = cl’owner − {r};
End For;
For every cl’j ∈ S’ do
 If |cl’j| < k then
 DisperseLessKCluster(S’, cl’j);
 End If;
End For;
End I3M-.

Function DisperseLessKCluster(S’, cl’j)
 S’ = S’ − {cl’j};
 For every r ∈ cl’j do
 cl’u* = FindBestCluster(r, S’);
 cl’u* = cl’u* ∪ {r};
 If |cl’u*| ≥ 2⋅k then
 Split2kCluster(S’, cl’u*);
 End If;
 End For;
End DisperseLessKCluster;

Figure 2. The I3M− Algorithm

4. THE OPTIMIZATION ALGORITHM
Both the non-incremental solution proposed in [3] for k-
anonymization, and the incremental algorithm for maintaining k-
anonymity for masked microdata when changes are brought to the
initial microdata are based on greedy strategies for constructing
solutions for the problem they address. So, they obtain good
solutions, but not the optimal solution. We present next an
optimization method, which is able to improve the solutions
provided by the mentioned algorithm, w.r.t. the information loss
measure. Although nor this method will obtain the optimal
solution for the k-anonymity problem, it has the capacity to
consistently and efficiently improve, to a certain degree, the
solutions produced by the other two algorithms.
Intuitively, in a clustering solution for k-anonymization, there are
some tuples that would be better placed in other clusters than the
cluster currently containing them. This situation occurs because
the total information loss will be smaller if some objects are
moved to other clusters. The tuples re-placement can be of course,
performed, only by preserving the k-anonymity for the microdata,
i.e. no cluster can remain with less than k tuples. Our proposed
solution treats both aspects: we perform certain elements
relocations so that total information loss decreases, and every
cluster ends with at least k elements. Specifically, we relocate not
isolated elements, but entire clusters if this can be done and total
information decreases.

In the following, we define the concepts we need for presenting
our solution, and then we present the optimization algorithm,
called IL_Optimization (Information Loss Optimization).

4.1 Totally Covered Clusters
In order to establish the conditions when entire clusters can be
relocated and when cluster relocation is beneficial we introduce
several definitions.

Definition 6: We say that a tuple r is covered by a cluster cl if
and only if the following two conditions hold simultaneously:
 r ∉ cl;
 If r is added to cl, gen(cl) does not change.

Definition 7: Let S = {cl1, cl2,…, clv} be a set of clusters. We call
cl ∈ S totally covered (by S) if and only if for all elements r ∈ cl
exists a cluster cl’ in S distinct from cl such that r is covered by
cl’. Two distinct elements in cl may be covered by different
clusters.

Definition 8: We use the term break the cluster cl, when each
element from the totally covered cluster cl is moved to a different
cluster that covers it. This procedure is not unique since every
element of cl may be covered by more than one cluster. To
represent a particular break we use a triplet (clj, S, S’) (called a
break), where clj is a cluster from S, and S’ is the set of clusters
obtained by breaking clj.

Definition 9: A break (clj, S, S’) is called interesting if the total
information loss for the new set of clusters is less than the total
information loss for the initial set.

In other words, for the new set of clusters S’ = { '
icl | i = 1, .., v

and i ≠ j} where each '
icl contains all elements from cli and it

may also contain some elements from clj that are covered by cli,
the following formula is satisfied:

∑∑
≠==

>
v

jii
i

v

i
i clILclIL

,1

'

1

)()(.

Definition 10: A break (clj, S, S’) is called optimal if S’ has the
lowest possible total information loss for all possible breaks of
cluster clj.

Definition 11: Let S = {cl1, cl2, .., clv} be a set of clusters. We call
clj ∈ S interesting totally covered cluster by S if and only if the
following two conditions hold:
 clj is a totally covered cluster by S ;
 There is at least one break (clj, S, S’) that is interesting.

Property 1: If clj is an interesting totally covered cluster by S
then every optimal break of clj is also an interesting break.

Proof: If clj is an interesting totally covered cluster by S, then,
according to Definition 11, it exists one interesting break (clj, S,
S’), i.e. IL(S’) < IL(S). For every optimal break (clj, S, S”),
according to Definition 10, IL(S”) ≤ IL(S'’). From these two
inequalities it follows that IL(S”) < IL(S), which means that the
optimal break (clj, S, S”) is interesting.

Example: The tuples from Table 1 have three quasi-identifier
attributes: Age, ZipCode, and Gender. The first is a numerical
attribute, and the next two are categorical. For ZipCode attribute
we use a generalization hierarchy that removes one last digit at
the time for each level up the generalization tree, and for Gender
attribute we have only one generalization level. The initial set of

clusters, S, contains three elements: cl1, cl2, and cl3. The
information loss for S is: IL(S) = 13.23.

Table 1: Totally Covered Clusters Example

Clusters Tuples Age ZipCode Gender
r1 25 41076 Male

cl1 r2 40 41935 Female
r3 35 12345 Male

cl2 r4 55 33333 Male
r5 33 41733 Female
r6 42 41076 Male cl3
r7 38 41933 Male

The cluster cl3 is totally covered, each tuple being covered by one
cluster (r5 is covered by cl1 and r6 is covered by cl2) or by both (r7
is covered by cl1 and cl2). There are two possible breaks for cl3.
The sets of clusters following each break are:
S1 = { 1

1cl , 1
2cl }, },,{},,,,{ 643

1
27521

1
1 rrrclrrrrcl == and

S2 = { 2
1cl , 2

2cl }, },,,{},,,{ 7643
2
2521

2
1 rrrrclrrrcl == .

The information loss for the resulting sets of clusters is as
follows: IL(S1)=13.4, IL(S2)=12.96. Compared with the original
set of clusters, the information loss is lowered only by S2.
Therefore, the break (cl3, S, S2) is an interesting break, while (cl3,
S, = S1) is not.

4.2 The IL_Optimization Algorithm
When a greedy algorithm that solves k-anonymization problem by
creating clusters is performed, usually we do not have any
guarantee that all resulting clusters are not totally covered. We
also notice that by breaking some of the totally covered clusters
the information loss will decrease. Based on these facts we
created an optimization algorithm that improves an existing
clustering solution for the k-anonymization problem (Figure 3).
The improvements resulted by applying the optimization
algorithm are tested for both non-incremental algorithm
introduced in [3] and the incremental algorithms we proposed in
the previous sections.

5. EXPERIMENTAL RESULTS
In our experiments we used the Adult database from the UC Irvine
Machine Learning Repository [16]. This database has become the
benchmark for k-anonymity algorithms, being used by many
researchers [11]. The experiments reported in [3] are also based
on it, and in this section we compare, in terms of efficiency,
scalability, and results quality, the static algorithm from [3] with
our incremental algorithms.

The algorithms we tested have been implemented in Java, and
tests were executed on a dual processor PC machine with 3.0 GHz
each and 1 GB of RAM.

In all the experiments, we considered Age and Education-num as
the set of numerical quasi-identifier attributes, and Work-class,
Marital-status, Occupation, Race, Sex, and Native-country as the
set of categorical quasi-identifier attributes. Microdata k-
anonymity was enforced in respect to the quasi-identifier
consisting of all these 8 attributes. We removed all tuples that
contained the null (?) value for one or more of the quasi-identifier
attributes from the microdata contained in the file adult.data [16].

Algorithm IL_Optimization is

Input IM – microdata;
S={cl1,cl2,…,clv} a solution for the k-
anonymization by clustering problem for
IM;

Output S’={cl’1,cl’2,…,cl’v’} another solution for
the k-anonymization by clustering problem

for IM so that ∑
=

'

1
)'(

v

j
jclIL ≤ ∑

=

v

j
jclIL

1
)(.

Determine the set St = {clt1, clt2,…, cltj} of
totally covered clusters from S in descending
order of their information loss. Let j be the
number of totally covered clusters from S (j =
|St|)

Saux= S;
Sf = ∅;
For i =1 to j do
 ComputeOptimalBreak(clti, Saux, Sf);
 If (clti, Saux, Sf) is interesting then
 Saux = Sf;
 End If;
End For;
S’ = Saux;

End IL_Optimization.
Function ComputeOptimalBreak(cl, Saux, Sf) is
 Sf = Saux;
 For every r ∈ cl do
 Let Scover be the set of all clusters
 from Sf that cover r.
 cl’= the cluster from Scover with the
 lowest IL / tuple;
 Sf = Sf – {cl’};
 Sf = Sf ∪ {cl’ ∪ {r}};
 End For;
End ComputeOptimalBreak;

Figure 3. The IL_Optimization Algorithm

A set of experiments has been conducted for a subset of the adult
dataset, for testing both the I3M+ and I3M- algorithms. Each
experiment had three phases. First, the static algorithm from [3]
was applied on a dataset IM, which was a subset of the entire
adult dataset. Second, we applied the I3M+ / I3M- algorithm to

update the clusters produced by the static algorithm, and
considering several ∆+M / ∆−M datasets. Third, the static
algorithm was applied on the entire new dataset, IM ∪ ∆+M / IM
− ∆−M.

For I3M+, IM had 10000 objects, and ∆+M had different sizes,
varying between 0.5% and 50% of IM size. For I3M-, IM − ∆−M
had 10000 objects, and ∆−M had different sizes, varying between
50 and 5000 tuples. The values considered for k were 3, 5 and 10.

The Figures 4 and 5 illustrate some of the obtained results, in
terms of information loss and processing time. The reported
results, for both static and incremental cases, are those obtained
after the optimization algorithm was also applied.

In Figures 4.a and 5.a, we compare: a) the information loss for
each set of clusters obtained by applying the static k-
anonymization algorithm on the initial microdata IM, followed by
I3M+ / I3M− on the corresponding increment dataset ∆+M / ∆−M
with b) the information loss for the set of clusters obtained by
applying the static k-anonymization algorithm on the final dataset
IM ∪∆+M / IM −∆−M. Of course, the information loss obtained by
the incremental algorithm deteriorates when the increment/
decrement dataset grows in size w.r.t. the initial dataset size.
Nevertheless, for small modification amounts, as is usually the
case in the real world databases evolution, the information loss
remains at about the same level as if we would use the non-
incremental algorithm.

From these experiments, we draw the conclusion that the
incremental algorithm can be used for updating k-anonymized
microdata several times when the increment/decrement datasets,
∆+M / ∆−M, are small. From time to time a static more time-
consuming algorithm will be used to keep the information loss at
acceptable ranges.

Figures 4.b and 5.b illustrate the running time for the incremental
algorithm compared with the static algorithm. The time for
incrementally processing the datasets ∆+M / ∆−M grows with
datasets size, but it is significantly lower than the time required to
statically process IM ∪∆+M / IM −∆−M. The decision to apply the
incremental algorithm vs. a static one is a tradeoff between data
quality and processing time. However, the advantages are
obvious: data quality remains high while the running time
significantly decreases.

3000

4000

5000

6000

7000

8000

0.5
% 1% 2% 3% 5% 10

%
15

%
25

%
50

%

% Data Increment

In
fo

rm
at

io
n

Lo
ss

Static IL After
Optimization

I3M+ IL After
Optimization

0

500

1000

1500

2000

0.5
% 1% 2% 3% 5% 10

%
15

%
25

%
50

%

% Data Increment

Ti
m

e
Un

its

I3M+ With
Optimization
Static With
Optimization

Figure 4. IL and Time for Static and I3M+ Algorithms, k=3

a) b)

6000

7000

8000

9000

10000

0.5
%

1.0
%

2.0
%

2.9
%

4.8
%

9.1
%

13
.0%

20
.0%

33
.3%

% Data Decrement

In
fo

rm
at

io
n

Lo
ss

I3M- IL After
Optimization
Static IL After
Optimization

0

300

600

900

1200

1500

1800

0.5
%

1.0
%

2.0
%

2.9
%

4.8
%

9.1
%

13
.0%

20
.0%

33
.3%

% Data Decrement

Ti
m

e
Un

its I3M- With
Optimization
Static With
Optimization

Figure 5. Static and I3M− Algorithms for k=5

As mentioned before, we applied, for both the static and the
incremental algorithms, our IL_Optimization algorithm. In every
experiment we obtained an improvement of the initial clustering
solution w.r.t. information loss. Figure 6 graphically represents
information loss before and after performing optimization, and
processing vs optimization time, for experiments with static and
I3M+ algorithms. It can be seen that, for both static and
incremental algorithms IL_Optimization has major advantages: it
improves the prior solution and it requires a very small amount of
time, compared to the time needed by the static or incremental k-
anonymization algorithms.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we introduced an incremental updating technique
for the maintenance of k-anonymized versions of large evolving
datasets. Our experiments have shown that, for small
increment/decrement datasets, ∆+M / ∆−M, the running time of the
incremental algorithms is significantly lower then the running
time for the static algorithm. From the data quality perspective,
the information loss computed using our incremental algorithms is
comparable with the information loss obtained by applying the
non-incremental algorithm to the final dataset. This technique will
allow a data holder to make his data available in real time when
small updates are performed over the initial dataset.

The second main contribution of this paper is an optimization
algorithm that is able to improve the solutions attained by either
the non-incremental or incremental algorithms. The optimization
process reduces the information loss value while its execution
time does not add a significant amount of time to the entire k-
anonymization process.

There are several promising areas for future work. We plan to
extend the incremental updating and optimization techniques for
p-sensitive k-anonymity property [21] also known as l-diversity
[13]. We intend to explore to what extent the release of
incremental k-anonymized versions of a masked microdata may
lead to identity disclosure. We also analyze the possibility of
using other clustering algorithms for k-anonymity problems that
will perform better in terms of information loss and/or running
time.

11000

14000

17000

20000

23000

26000

10
05

0
10

10
0

10
20

0
10

30
0

10
50

0
11

00
0

11
50

0
12

50
0

15
00

0

No of Tuples

In
fo

rm
at

io
n

Lo
ss

Static IL Before Optimization Static IL After Optimization

I3M+ IL Before Optimization I3M+ IL After Optimization

20
64

20
76

21
07

21
86

22
41

25
00

27
26

31
78

45
89

0

100

200

300

400

500

600

10
05

0
10

10
0

10
20

0
10

30
0

10
50

0
11

00
0

11
50

0
12

50
0

15
00

0

No of Tuples

Ti
m

e
Un

its

Static Processing Time Static Optimization Time

I3M+ Processing Time I3M+ Optimization Time

Figure 6. IL and Time for IL_Optimization Algorithm

a) b)

7. REFERENCES
[1] Aggarwal, G., Feder, T., Kenthapadi, K., Motwani, R.,

Panigrahy, R., Thomas, D., and Zhu, A., Achieving
Anonymity via Clustering, Proc. of the 10th Intl. Conf. on
Database Theory, 2005.

[2] Bayardo, R.J, and Agrawal, R., Data Privacy through
Optimal k-Anonymization, Proc. of the IEEE Intl. Conf. of
Data Eng., 2005, 217-228.

[3] Byun, J.W., Kamra, A., Bertino, E, and Li, N., Efficient k-
Anonymity using Clustering Technique, CERIAS Tech
Report 2006-10, 2006a.

[4] Byun, J.W., Sohn, Y., Bertino, E., and Li, N., Secure
Anonymization for Incremental Datasets, Proc. of the 3rd
VLDB Workshop on Secure Data Management, 2006b.

[5] Domingo-Ferrer, J., Mateo-Sanz, J., and Torra,V.,
Comparing SDC Methods for Microdata on the Basis of
Information Loss and Disclosure Risk, Pre-proc. of ETK-
NTTS'2001 (vol. 2), Luxembourg: Eurostat, 2001, 807-826.

[6] GLB, Gramm-Leach-Bliley Financial Services
Modernization Act, available online at
http://banking.senate.gov/conf/, 1999.

[7] Han, J., and Kamber, M., Data Mining: Concepts and
Techniques, The Morgan Kaufmann Series in Data
Management Systems, 2001.

[8] HIPAA, Health Insurance Portability and Accountability
Act, Available online at http://www.hhs.gov/ocr/hipaa, 2002.

[9] Iyengar, V., Transforming Data to Satisfy Privacy
Constraints, Proc. of the Eighth ACM SIGKDD Intl. Conf. on
Knowledge Discovery and Data Mining, 2002, 279-288.

[10] LeFevre, K., DeWitt, D., and Ramakrishnan, R., Incognito:
Efficient Full-Domain k-Anonymity, Proc. of the ACM
SIGMOD, Baltimore, Maryland, 2005, 49-60.

[11] LeFevre, K., DeWitt, D., and Ramakrishnan, R., Mondrian
Multidimensional k-Anonymity, Proc. of the IEEE Intl.
Conf. of Data Eng., Atlanta, 2006.

[12] Lunacek, M., Whitley, D., and Ray, I., A Crossover
Operator for the k-Anonymity Problem, Proc. of the GECCO
Conference, 2006, 1713 – 1720.

[13] Machanavajjhala, A., Gehrke, J., and Kifer, D., l-diversity:
privacy beyond k-anonymity, Proc. of the 22nd IEEE Intl.
Conference on Data Eng., 2006.

[14] Mateo-Sanz, J.M., Domingo-Ferrer, J., and Sebe, F.,
Probabilistic Information Loss Measures in Confidentiality
Protection of Continuous Microdata, Data Mining and
Knowledge Discovery, Vol. 11, No. 2, 2005, 181– 193.

[15] Meyerson A., and Williams R., On the Complexity of
Optimal k-Anonymity, ACM PODS Conf., 2004, 223 – 228.

[16] Newman, D.J., Hettich, S., Blake, C.L., and Merz, C.J., UCI
Repository of Machine Learning Databases, available at
www.ics.uci.edu/~mlearn/MLRepository.html, University of
California, Irvine, 1998.

[17] Samarati P., Protecting Respondents Identities in Microdata
Release, IEEE Transactions on Knowledge and Data Eng.,
Vol. 13, No. 6, 2001, 1010-1027.

[18] Sweeney L., k-Anonymity: A Model for Protecting Privacy,
Intl. Journal on Uncertainty, Fuzziness, and Knowledge-
based Systems, Vol. 10, No. 5, 2002a, 557 – 570.

[19] Sweeney L., Achieving k-Anonymity Privacy Protection
Using Generalization and Suppression, Intl. Journal on
Uncertainty, Fuzziness, and Knowledge-based Systems, Vol.
10, No. 5, 2002b, 571 – 588.

[20] Truta, T.M., Fotouhi, F., and Barth-Jones, D., Privacy and
Confidentiality Management for the Microaggregation
Disclosure Control Method, Workshop on Privacy and
Electronic Society, 10th ACM CCS, 2003, 21-30.

[21] Truta, T.M., and Bindu, V., Privacy Protection: p-Sensitive
k-Anonymity Property, Workshop on Privacy Data
Management, 22th IEEE Intl. Conf. of Data Eng., 2006.

[22] Willemborg, L., and Waal, T. (ed) , Elements of Statistical
Disclosure Control, Springer Verlag, 2001.

