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ABSTRACT 
New privacy regulations together with ever increasing data 
availability and computational power have created a huge interest 
in data privacy research. One major research direction is built 
around k-anonymity property, which is required for the released 
data. Although many k-anonymization algorithms exist for static 
data, a complete framework to cope with data evolution (a real 
world scenario) has not been proposed before. In this paper, we 
introduce algorithms for the maintenance of k-anonymized 
versions of large evolving datasets. These algorithms 
incrementally manage insert/delete/update dataset modifications. 
Our results showed that incremental maintenance is very efficient 
compared with existing techniques and preserves data quality. 
The second main contribution of this paper is an optimization 
algorithm that is able to improve the quality of the solutions 
attained by either the non-incremental or incremental algorithms. 

Categories and Subject Descriptors 
K.4.1 [Computers and Society]: Public Policy Issues – privacy. 
I.5.3 [Pattern Recognition]: Clustering – algorithms.  

General Terms 
Algorithms, Performance, Security. 

Keywords 
Privacy, k-anonymity, incremental, optimization, clustering. 

1. INTRODUCTION 
To protect the privacy of individuals in the information era is 
challenge that our society has just begun facing. More and more 
microdata (datasets where each tuple belongs to an individual 
entity) are collected by different agencies. Some of these 
microdata need to be released, for various purposes, to other 
parties in a modified form (without the direct identifying 

information such as SSN, Name, etc.). But even altered this way, 
these datasets could still present vulnerabilities that can be 
exploited by intruders, i.e. persons whose goals are to identify 
specific individuals and to use the confidential information they 
discover for malicious purposes. The high volume and availability 
of released datasets together with ever increasing computational 
power made the protection against those vulnerabilities an 
increasingly difficult task. 

There are several regulations related to the use and the disclosure 
of confidential information [6, 8]. All these regulations, together 
with the necessity of collecting personal information, have 
funneled a huge interest in privacy research. Techniques to avoid 
the disclosure of confidential information exist in the literature 
[22]. Among them, the k-anonymity property required for the 
released microdata was recently introduced [17, 18] and 
extensively studied [2, 11, 21, etc.]. This property requires that in 
the released microdata every tuple will be indistinguishable from 
at least (k-1) other tuples with respect to a subset of attributes 
called quasi-identifier attributes. 

Various k-anonymization algorithms exist, which generally 
proceed by using generalization and suppression [17, 19]. Besides 
ensuring k-anonymity property, these algorithms must also 
consider minimizing one or more cost metrics between initial and 
released microdata. Of particular interest are the cost metrics that 
quantify the information loss [3, 5, 14, 20]. Although producing 
the optimal solution for the k-anonymity problem w.r.t. many 
proposed cost measures has been proved to be NP-hard [15], there 
are several polynomial algorithms that produce good solutions for 
the k-anonymity problem for real life datasets [1, 3, 10, 11, etc.]. 

Contributions All mentioned k-anonymization approaches 
assume that the processed microdata sets are static. Nevertheless, 
large microdata sets containing private information are time-
evolving, meaning that new data are collected and added, and old 
data are purged. When new k-anonymized versions of such a 
dataset are prepared for release, the current solution is to re-
process the entire dataset, from scratch, without relying on 
previous releases of the dataset. However, processing a large 
dataset to achieve k-anonymity is time-consuming.  

We propose in this paper an incremental updating technique for 
the maintenance of k-anonymized versions of large evolving 
datasets. Essentially, the proposed technique produces a k-
anonymized version of a dataset IM ∪ ∆+M − ∆−M, starting from 
a previous k-anonymized release for the dataset IM, which is 
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updated to include the new data in the increment dataset ∆+M and 
to remove the obsolete dataset ∆−M. The anonymization process 
tries to minimize information loss. As our experimental results 
show, for small size datasets ∆+M / ∆−M, w.r.t. the initial dataset 
IM size, the incremental updating process is far more efficient 
than to re-process the final dataset IM ∪ ∆+M − ∆−M. Also, the 
quality of the result remains at about the same level for our 
approach as for a non-incremental one. 

Several approaches have been proposed to model and solve k-
anonymization as a clustering problem [1, 3]. Our incremental 
updating technique continues on this direction, i.e. it uses ideas 
from the clustering area. We evaluate the performance of our 
method by comparing the results it produces against the results 
provided by the static (non-incremental) k-anonymization method 
presented in [3]. While a similar updating method in case of only 
insertions has very recently been introduced [4], a complete 
maintenance framework of k-anonymized microdata that manages 
insert/delete/update modifications has not, to our knowledge, been 
reported anywhere. 

An equally important contribution we present in this paper is an 
optimization algorithm that is able to improve the solutions 
attained by either the non-incremental algorithm [3] or the 
incremental algorithm we propose. The optimization process is 
highly efficient, as our experiments have shown. 

The paper is structured as follows. Section 2 introduces the 
concepts and notations we use along the paper. Section 3 presents 
the incremental I3M+ and I3M- algorithms for maintaining 
masked microdata when inserts and deletes are performed in the 
initial microdata. Section 4 describes the optimization algorithm 
proposed for improving the quality of the masked microdata. 
Section 5 reports experimental results for incremental and 
optimization algorithms. The paper ends with conclusions and 
future work directions in Section 6.  

2. CONCEPTS AND NOTATIONS 
Let IM be the initial microdata and MM be the released (a.k.a. 
masked) microdata. IM consists in a set of tuples over an attribute 
set. These attributes are classified into the following three 
categories:  

 I1, I2,..., Im are identifier attributes such as Name and SSN 
that can be used to identify a record. 

 K1, K2,…, Kn are key or quasi-identifier attributes such as 
ZipCode and Age that may be known by an intruder.  

 S1, S2,…, Sr are confidential or sensitive attributes such as 
PrincipalDiagnosis and ICD9Code that are assumed to be 
unknown to an intruder.  

While the identifiers attributes are removed from the published 
microdata, the quasi-identifier and confidential attributes are 
usually released to the researchers. A general assumption, as 
noted, is that the values for the confidential attributes are not 
available from any external source. This assumption guarantees 
that an intruder can not use the confidential attributes values to 
increase his/her chances of disclosure. Unfortunately, an intruder 
may use record linkage techniques between quasi-identifier 
attributes and external available information to glean the identity 
of individuals from the masked microdata. To avoid this 

possibility of disclosure, one frequently used solution is to modify 
the initial microdata, more specifically the quasi-identifier 
attributes values, in order to enforce the k-anonymity property. 

Definition 1 (k-anonymity property): The k-anonymity property 
for a masked microdata (MM) is satisfied if every combination of 
quasi-identifier attribute values in MM occurs k or more times. 

Generalization of the quasi-identifier attributes is one of the 
techniques widely used for k-anonymization. It consists in 
replacing the actual value of an attribute with a less specific, more 
general value that is faithful to the original [19]. 

Initially, this technique was used for categorical attributes and 
employed predefined (static) domain and value generalization 
hierarchies [19, 17, 11, 9, 12]. Generalization was extended for 
numerical attributes either by using predefined hierarchies [9] or 
a hierarchy-free model [11]. 

For categorical attributes we used generalization based on 
predefined hierarchies at the cell level [12]. We denote by HC the 
hierarchies (domain and value) associated to the categorical 
quasi-identifier attribute C. For numerical attributes we use the 
hierarchy-free generalization [11], which consists in replacing the 
set of values to be generalized to the smallest interval that 
includes all the initial values. For instance, the values: 35, 38, 36 
are generalized to the interval [35-38]. This approach is best 
suited to solve the k-anonymity problem using clustering 
methods, because the set of clusters are initially created, and the 
generalization occurs afterwards at the cluster level, and as 
needed for each individual cluster. 

The central idea in employing clustering to solve the k-
anonymization problem is as follows. A clustering method is 
applied on microdata, w.r.t. the quasi-identifier attributes, and the 
tuples in each of the resulted clusters are generalized to a common 
tuple. To ensure that k-anonymity is correctly enforced, two 
constraints are required when the clustering process is performed. 
First, each resulted cluster must have at least k elements. If it 
does, the subsequent generalization of the cluster elements to a 
common tuple ensures that in the released microdata each tuple 
becomes indistinguishable from at least (k-1) other tuples. 
Second, the clustering method must act towards minimizing the 
information loss. The clusters should be formed such that the 
information lost by generalizing each group of tuples to a 
common value will be as low as possible. There are different 
ways to define information loss in the context of k-anonymization 
by clustering [1, 3].  

Next, we formally introduce the k-anonymization by clustering 
problem, we explain how generalization of tuples in a cluster is 
performed, and we describe the information loss measure we use. 

Definition 2: ([3]) Let IM be the initial microdata set. The k-
anonymization by clustering problem is to find a partition S = 
{cl1, cl2, … , clv} of IM, where clj ⊆ IM, j=1..v, are called clusters 
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The k-anonymization of the initial microdata must be conducted 
to preserve data usefulness and minimize information loss. In 
order to achieve this goal, we generalize each cluster to the least 
general tuple that represents all tuples in that group. We call 
generalization information for a cluster the minimal covering 
tuple for that cluster, and we define it as follows. 

Definition 3: Let cl = {r1, r2, …, rq} ∈ S be a cluster, KN = {N1, 
N2, ..., Ns} be the set of numerical quasi-identifier attributes and 
KC = {C1, C2,,…, Ct} be the set of categorical quasi-identifier 
attributes. The generalization information of cl, w.r.t. quasi-
identifier attribute set K = KN  ∪ KC is the “tuple” gen(cl), having 
the scheme K, where: 

 For each categorical attribute Cj ∈ K , gen(cl)[Cj] = the 
lowest common ancestor in HCj of {r1[Cj],  r2[Cj],  … , 
rq[Cj]}; 

 For each numerical attribute Nj ∈ K , gen(cl)[Nj] = the 
interval [min{r1[Nj], r2[Nj], … , rq[Nj]}, max{r1[Nj], r2[Nj], 
… , rq[Nj]}]. 

For cluster cl, its generalization information gen(cl) is the tuple 
having as value for each quasi-identifier attribute, numerical or 
categorical, the most specific common generalized value for all 
that attribute values from cl tuples. In MM, each tuple from 
cluster cl will be replaced by gen(cl). 

To quantify the information loss caused by generalizing a cluster 
to a common tuple we use the measure introduced in [3]. 

Definition 4: Let cl ∈ S be a cluster, gen(cl) its generalization 
information and K = {N1, N2, .., Ns, C1, C2, .., Ct} the set of quasi-
identifier attributes. The information loss caused by generalizing 
cl tuples to gen(cl) is: 
 

IL(cl) = || cl ⋅   +

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
∑
=

∈∈

s

j
j

r
jr

j

NrNrsize

Nclgensize

1 ][max],[min

]))[((

IMIM

 

                   
⎟
⎟

⎠

⎞Λ
+∑

=

t

j C

j

j
Hheight

Cclgenheight

1 )(
])))[(((  

where:  

 |cl| denotes the cluster cl cardinality; 

 size([i1, i2]) is the size of the interval [i1, i2] (the value i2-i1); 

 Λ(w), w∈HCj is the subhierarchy of HCj rooted in w; 

 height(HCj) denotes the height of the tree hierarchy HCj. 

Definition 5 ([3]): Total information loss for a solution S = {cl1, 
cl2, … , clv} of the k-anonymization by clustering problem, 
denoted by IL (S ), is the sum of the information loss measure for 
all the clusters in S. 

 

3. THE INCREMENTAL MAINTENANCE 
OF MASKED MICRODATA ALGORITHM 
(I3M ALGORITHM) 
As expressed by Definition 4, the information loss measure 
penalizes each tuple with a cost proportional with how “far” the 
tuple is from the cluster generalization information. Intuitively, 
smaller the clusters in a solution are and more similar the tuples in 
those groups will be, then less information will be lost. So, the 
desideratum is to group together the most similar objects (i.e. that 
cause the least possible generalization) in clusters with 
cardinalities as close as possible to k. A greedy algorithm for the 
k-anonymization by clustering problem can be found in [3]. 

We describe next the algorithms for the incremental maintenance 
of masked microdata MM, when IM is modified by insert/ 
delete/update operations. Of course, k-anonymizing the modified 
microdata is possible by re-applying on the entire modified 
dataset the algorithm initially used for masking. But this process 
is time-consuming. The incremental algorithm we propose runs 
much faster, especially for small modification amounts, and it 
does not lose significantly in the quality of the solution it 
produces. 

We present, first, the case when only inserts are being performed, 
then the case when only deletions are made. Updates can be 
managed as deletion of old tuples values followed by insertion of 
their new values (algorithm I3M-, then I3M+). 

3.1 Maintaining MM when inserting 
Let S = {cl1, cl2,…, clv} be a solution for the k-anonymization by 
clustering problem, for the microdata IM. The incremental dataset 
∆+M is subsequently added to IM. The problem is to efficiently 
update S to S’ = {cl’1, cl’2,…, cl’v’} that ensures k-anonymity for 
IM ∪ ∆+M . 

The solution to this problem is straightforward. Each tuple r in 
∆+M is added to that cluster in S that, increased with r, will 
produce the minimum increase of total information loss. The 
function FindBestCluster, not explicitly described in Figure 1, 
identifies that optimal cluster for an tuple r, denoted by cl’u*. 
When, due to multiple insertions, a cluster cl’u* grows bigger than 
2⋅k elements, that cluster will be split in two, not arbitrarily, but in 
a greedy manner that tries to minimize total information loss. The 
split procedure is described in function Split2kCluster, Figure 1. 
Figure 1 presents the I3M+ algorithm for maintaining k-
anonymity for MM when new records are added. 

Split2kCluster is inspired, though adapted, from hierarchical 
divisive clustering algorithms [7], for splitting the cluster cl’u*. 
The tuple that reduces most the information loss for the cluster 
cl’u* when deleted from cl’u* is chosen as seed for a new cluster 
cl’new. Tuples are transported one at a time from the cluster to be 
split to the new cluster until cl’new has enough (k) tuples. The 
tuple to be moved between the two clusters is chosen to minimize 
the information loss cumulated for cl’u* and cl’new. 
 

 

 

 



Algorithm I3M+ is 
Input IM – microdata; ∆+M – new microdata; 

S={cl1,cl2,…,clv} a solution for the k-
anonymization by clustering problem for 
IM; 

Output S’={cl’1,cl’2,…,cl’v’} a solution for the k-
anonymization by clustering problem for IM  
∪ ∆+M. 

S’ = S; 
For every r ∈ ∆+M do 
   cl’u* = FindBestCluster(r, S’); 
   cl’u* = cl’u* ∪ {r}; 
   If |cl’u*| ≥ 2⋅k then 
      Split2kCluster(S’, cl’u*); 
   End If; 
End For; 
End I3M+. 
 

Function Split2kCluster(S’, cl’u*) is  
   cl’new = ∅;  // a new empty cluster; 
   While | cl’new | < k do 
   /* Transfer from cluster cl’u* to cluster 
      cl’new the tuple (among the tuples 
      in cl’u*) that minimizes the sum of 
      information loss for the two clusters */ 
      bestEntity = null; 
      sumInfoLoss = ∞; 
      For every r ∈ cl’u* do 
         If IL(cl’u* −{r}) + IL(cl’new ∪{r})  

     < sumInfoLoss then 
            bestEntity = r; 
            sumInfoLoss = IL(cl’u* −{r}) + 

   IL(cl’new ∪{r}); 
         End If; 
      End For; 
      cl’u* = cl’u* − {bestEntity}; 
      cl’new = cl’new ∪ {bestEntity} 
   End While; 
   S’ = S’ ∪ {cl’new}; 
End Split2kCluster; 

Figure 1. The I3M+ Algorithm 

3.2 Maintaining MM when deleting 
Let S = {cl1, cl2,…, clv} be a solution for the k-anonymization by 
clustering problem, for  the microdata IM . Obsolete tuples in 
dataset ∆−M are subsequently deleted from IM . The problem is to 
efficiently update S to S’ = {cl’1, cl’2,…, cl’v’} that ensures k-
anonymity for IM − ∆−M . 

The algorithm proceeds as follows. Each tuple r in ∆−M is deleted 
from the cluster currently containing it. The clusters that remain 
with less than k elements are dispersed into the others, in order to 
not lose k-anonymity for IM − ∆−M. The spreading procedure for 
a cluster cl’j is described in function DisperseLessKCluster (see 
Figure 2). Each element r of cl’j is relocated to another cluster, the 
one that, increased with r, will produce the minimum increase of 
the total information loss. If, in the spreading and relocation 
process for a cluster, other cluster grows bigger then 2⋅k elements, 
that cluster will be split in two. The same procedure 
Split2kCluster as in I3M+ is used with that end in view. Figure 2 
presents the I3M−  algorithm for maintaining k-anonymity for 
MM when obsolete tuples are deleted. 

Algorithm I3M- is 
Input  IM – microdata; ∆−M – obsolete microdata; 

S={cl1,cl2,…,clv} a solution for the k-
anonymization by clustering problem for 
IM; 

Output S’={cl’1,cl’2,…,cl’v’} a solution for the k-
anonymization by clustering problem for IM 
− ∆−M. 

S’ = S; 
For every r ∈ ∆−M do 
   // cl’owner denotes the cluster containing r 
   cl’owner = cl’owner − {r}; 
End For; 
For every cl’j ∈ S’ do 
   If |cl’j| < k then 
      DisperseLessKCluster(S’, cl’j); 
   End If; 
End For; 
End I3M-. 
 
Function DisperseLessKCluster(S’, cl’j) 
   S’ = S’ − {cl’j}; 
   For every r ∈ cl’j do 
      cl’u* = FindBestCluster(r, S’); 
      cl’u* = cl’u* ∪ {r}; 
      If |cl’u*| ≥ 2⋅k then 
         Split2kCluster(S’, cl’u*); 
      End If; 
   End For; 
End DisperseLessKCluster; 

Figure 2. The I3M− Algorithm 

4. THE OPTIMIZATION ALGORITHM 
Both the non-incremental solution proposed in [3] for k-
anonymization, and the incremental algorithm for maintaining k-
anonymity for masked microdata when changes are brought to the 
initial microdata are based on greedy strategies for constructing 
solutions for the problem they address. So, they obtain good 
solutions, but not the optimal solution. We present next an 
optimization method, which is able to improve the solutions 
provided by the mentioned algorithm, w.r.t. the information loss 
measure. Although nor this method will obtain the optimal 
solution for the k-anonymity problem, it has the capacity to 
consistently and efficiently improve, to a certain degree, the 
solutions produced by the other two algorithms. 
Intuitively, in a clustering solution for k-anonymization, there are 
some tuples that would be better placed in other clusters than the 
cluster currently containing them. This situation occurs because 
the total information loss will be smaller if some objects are 
moved to other clusters. The tuples re-placement can be of course, 
performed, only by preserving the k-anonymity for the microdata, 
i.e. no cluster can remain with less than k tuples. Our proposed 
solution treats both aspects: we perform certain elements 
relocations so that total information loss decreases, and every 
cluster ends with at least k elements. Specifically, we relocate not 
isolated elements, but entire clusters if this can be done and total 
information decreases. 

In the following, we define the concepts we need for presenting 
our solution, and then we present the optimization algorithm, 
called IL_Optimization (Information Loss Optimization).  



4.1 Totally Covered Clusters 
In order to establish the conditions when entire clusters can be 
relocated and when cluster relocation is beneficial we introduce 
several definitions. 

Definition 6: We say that a tuple r is covered by a cluster cl if 
and only if the following two conditions hold simultaneously: 
 r ∉ cl; 
 If r is added to cl, gen(cl) does not change.  

 

Definition 7: Let S = {cl1, cl2,…, clv} be a set of clusters. We call 
cl ∈ S totally covered (by S) if and only if for all elements r ∈ cl 
exists a cluster cl’ in S distinct from cl such that r is covered by 
cl’. Two distinct elements in cl may be covered by different 
clusters. 

Definition 8: We use the term break the cluster cl, when each 
element from the totally covered cluster cl is moved to a different 
cluster that covers it. This procedure is not unique since every 
element of cl may be covered by more than one cluster. To 
represent a particular break we use a triplet (clj, S, S’) (called a 
break), where clj is a cluster from S, and S’ is the set of clusters 
obtained by breaking clj. 

Definition 9: A break (clj, S, S’) is called interesting if the total 
information loss for the new set of clusters is less than the total 
information loss for the initial set.  

In other words, for the new set of clusters S’ = { '
icl  | i = 1, .., v 

and i ≠ j} where each '
icl  contains all elements from cli and it 

may also contain some elements from clj that are covered by cli, 
the following formula is satisfied: 
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Definition 10: A break (clj, S, S’) is called optimal if S’ has the 
lowest possible total information loss for all possible breaks of 
cluster clj. 

Definition 11: Let S = {cl1, cl2, .., clv} be a set of clusters. We call 
clj ∈ S interesting totally covered cluster by S if and only if the 
following two conditions hold: 
 clj is a totally covered cluster by S ; 
 There is at least one break (clj, S, S’) that is interesting.  

 

Property 1: If clj is an interesting totally covered cluster by S 
then every optimal break of clj is also an interesting break. 

Proof: If clj is an interesting totally covered cluster by S, then, 
according to Definition 11, it exists one interesting break (clj, S, 
S’), i.e. IL(S’) < IL(S). For every optimal break (clj, S, S”), 
according to Definition 10, IL(S”) ≤ IL(S'’). From these two 
inequalities it follows that IL(S”) < IL(S), which means that the 
optimal break (clj, S, S”) is interesting.  

Example: The tuples from Table 1 have three quasi-identifier 
attributes: Age, ZipCode, and Gender. The first is a numerical 
attribute, and the next two are categorical. For ZipCode attribute 
we use a generalization hierarchy that removes one last digit at 
the time for each level up the generalization tree, and for Gender 
attribute we have only one generalization level. The initial set of 

clusters, S, contains three elements: cl1, cl2, and cl3. The 
information loss for S is: IL(S) = 13.23. 

Table 1: Totally Covered Clusters Example 

Clusters Tuples Age ZipCode Gender 
r1 25 41076 Male 

cl1 r2 40 41935 Female 
r3 35 12345 Male 

cl2 r4 55 33333 Male 
r5 33 41733 Female 
r6 42 41076 Male cl3 
r7 38 41933 Male 

 

The cluster cl3 is totally covered, each tuple being covered by one 
cluster (r5 is covered by cl1 and r6 is covered by cl2) or by both (r7 
is covered by cl1 and cl2). There are two possible breaks for cl3. 
The sets of clusters following each break are: 
S1 = { 1

1cl , 1
2cl }, },,{},,,,{ 643

1
27521

1
1 rrrclrrrrcl == and 

S2 = { 2
1cl , 2

2cl }, },,,{},,,{ 7643
2
2521

2
1 rrrrclrrrcl == . 

The information loss for the resulting sets of clusters is as 
follows: IL(S1)=13.4, IL(S2)=12.96. Compared with the original 
set of clusters, the information loss is lowered only by S2. 
Therefore, the break (cl3, S, S2) is an interesting break, while (cl3, 
S, = S1) is not. 

4.2 The IL_Optimization Algorithm 
When a greedy algorithm that solves k-anonymization problem by 
creating clusters is performed, usually we do not have any 
guarantee that all resulting clusters are not totally covered. We 
also notice that by breaking some of the totally covered clusters 
the information loss will decrease. Based on these facts we 
created an optimization algorithm that improves an existing 
clustering solution for the k-anonymization problem (Figure 3). 
The improvements resulted by applying the optimization 
algorithm are tested for both non-incremental algorithm 
introduced in [3] and the incremental algorithms we proposed in 
the previous sections. 

5. EXPERIMENTAL RESULTS  
In our experiments we used the Adult database from the UC Irvine 
Machine Learning Repository [16]. This database has become the 
benchmark for k-anonymity algorithms, being used by many 
researchers [11]. The experiments reported in [3] are also based 
on it, and in this section we compare, in terms of efficiency, 
scalability, and results quality, the static algorithm from [3] with 
our incremental algorithms. 

The algorithms we tested have been implemented in Java, and 
tests were executed on a dual processor PC machine with 3.0 GHz 
each and 1 GB of RAM.  

In all the experiments, we considered Age and Education-num as 
the set of numerical quasi-identifier attributes, and Work-class, 
Marital-status, Occupation, Race, Sex, and Native-country as the 
set of categorical quasi-identifier attributes. Microdata k-
anonymity was enforced in respect to the quasi-identifier 
consisting of all these 8 attributes. We removed all tuples that 
contained the null (?) value for one or more of the quasi-identifier 
attributes from the microdata contained in the file adult.data [16]. 



Algorithm IL_Optimization is 

Input  IM – microdata;  
S={cl1,cl2,…,clv} a solution for the k-
anonymization by clustering problem for 
IM; 

Output S’={cl’1,cl’2,…,cl’v’} another solution for 
the k-anonymization by clustering problem 

for IM so that ∑
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Determine the set St = {clt1, clt2,…, cltj} of 
totally covered clusters from S in descending 
order of their information loss. Let j be the 
number of totally covered clusters from S (j = 
|St|)  

Saux= S; 
Sf = ∅; 
For i =1 to j do 
   ComputeOptimalBreak(clti, Saux, Sf); 
   If (clti, Saux, Sf) is interesting then 
        Saux = Sf;  
   End If;  
End For; 
S’ = Saux; 
 
End IL_Optimization. 
Function ComputeOptimalBreak(cl, Saux, Sf) is  
   Sf  = Saux; 
   For every r ∈ cl do 
      Let Scover be the set of all clusters  
         from Sf that cover r.  
      cl’= the cluster from Scover with the  
         lowest IL / tuple;  
      Sf = Sf – {cl’}; 
      Sf = Sf ∪ {cl’ ∪ {r}}; 
   End For; 
End ComputeOptimalBreak; 

Figure 3. The IL_Optimization Algorithm 

A set of experiments has been conducted for a subset of the adult 
dataset, for testing both the I3M+ and I3M- algorithms. Each 
experiment had three phases. First, the static algorithm from [3] 
was applied on a dataset IM, which was a subset of the entire 
adult dataset. Second, we applied the I3M+ / I3M- algorithm to 

update the clusters produced by the static algorithm, and 
considering several ∆+M / ∆−M datasets. Third, the static 
algorithm was applied on the entire new dataset, IM ∪ ∆+M / IM 
− ∆−M.  

For I3M+, IM had 10000 objects, and ∆+M had different sizes, 
varying between 0.5% and 50% of IM size. For I3M-, IM  − ∆−M 
had 10000 objects, and ∆−M had different sizes, varying between 
50 and 5000 tuples. The values considered for k were 3, 5 and 10. 

The Figures 4 and 5 illustrate some of the obtained results, in 
terms of information loss and processing time. The reported 
results, for both static and incremental cases, are those obtained 
after the optimization algorithm was also applied. 

In Figures 4.a and 5.a, we compare: a) the information loss for 
each set of clusters obtained by applying the static k-
anonymization algorithm on the initial microdata IM, followed by 
I3M+ / I3M− on the corresponding increment dataset ∆+M / ∆−M 
with b) the information loss for the set of clusters obtained by 
applying the static k-anonymization algorithm on the final dataset 
IM ∪∆+M / IM −∆−M. Of course, the information loss obtained by 
the incremental algorithm deteriorates when the increment/ 
decrement dataset grows in size w.r.t. the initial dataset size. 
Nevertheless, for small modification amounts, as is usually the 
case in the real world databases evolution, the information loss 
remains at about the same level as if we would use the non-
incremental algorithm.  

From these experiments, we draw the conclusion that the 
incremental algorithm can be used for updating k-anonymized 
microdata several times when the increment/decrement datasets, 
∆+M / ∆−M, are small. From time to time a static more time- 
consuming algorithm will be used to keep the information loss at 
acceptable ranges. 

Figures 4.b and 5.b illustrate the running time for the incremental 
algorithm compared with the static algorithm. The time for 
incrementally processing the datasets ∆+M / ∆−M grows with 
datasets size, but it is significantly lower than the time required to 
statically process IM ∪∆+M / IM −∆−M. The decision to apply the 
incremental algorithm vs. a static one is a tradeoff between data 
quality and processing time. However, the advantages are 
obvious: data quality remains high while the running time 
significantly decreases. 
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Figure 4. IL and Time for Static and I3M+ Algorithms, k=3 

a) b) 



6000

7000

8000

9000

10000

0.5
%

1.0
%

2.0
%

2.9
%

4.8
%

9.1
%

13
.0%

20
.0%

33
.3%

% Data Decrement

In
fo

rm
at

io
n 

Lo
ss

I3M- IL After
Optimization
Static IL After
Optimization

  

0

300

600

900

1200

1500

1800

0.5
%

1.0
%

2.0
%

2.9
%

4.8
%

9.1
%

13
.0%

20
.0%

33
.3%

% Data Decrement

Ti
m

e 
Un

its I3M- With
Optimization
Static With
Optimization

 
Figure 5. Static and I3M− Algorithms for k=5 

As mentioned before, we applied, for both the static and the 
incremental algorithms, our IL_Optimization algorithm. In every 
experiment we obtained an improvement of the initial clustering 
solution w.r.t. information loss. Figure 6 graphically represents 
information loss before and after performing optimization, and 
processing vs optimization time, for experiments with static and 
I3M+ algorithms. It can be seen that, for both static and 
incremental algorithms IL_Optimization has major advantages: it 
improves the prior solution and it requires a very small amount of 
time, compared to the time needed by the static or incremental k-
anonymization algorithms. 

6. CONCLUSIONS AND FUTURE WORK  
In this paper, we introduced an incremental updating technique 
for the maintenance of k-anonymized versions of large evolving 
datasets. Our experiments have shown that, for small 
increment/decrement datasets, ∆+M / ∆−M, the running time of the 
incremental algorithms is significantly lower then the running 
time for the static algorithm. From the data quality perspective, 
the information loss computed using our incremental algorithms is 
comparable with the information loss obtained by applying the 
non-incremental algorithm to the final dataset. This technique will 
allow a data holder to make his data available in real time when 
small updates are performed over the initial dataset. 

The second main contribution of this paper is an optimization 
algorithm that is able to improve the solutions attained by either 
the non-incremental or incremental algorithms. The optimization 
process reduces the information loss value while its execution 
time does not add a significant amount of time to the entire k-
anonymization process. 

There are several promising areas for future work. We plan to 
extend the incremental updating and optimization techniques for 
p-sensitive k-anonymity property [21] also known as l-diversity 
[13]. We intend to explore to what extent the release of 
incremental k-anonymized versions of a masked microdata may 
lead to identity disclosure. We also analyze the possibility of 
using other clustering algorithms for k-anonymity problems that 
will perform better in terms of information loss and/or running 
time. 
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Figure 6. IL and Time for IL_Optimization Algorithm  
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