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Abstract. This paper proposes an adaptive clustering approach. We
focus on re-clustering an object set, previously clustered, when the fea-
ture set characterizing the objects increases. We have developed adaptive
extensions for two traditional clustering algorithms (k-means and Hi-
erarchical Agglomerative Clustering). These extensions can be used for
adjusting a clustering, that was established by applying the correspond-
ing non-adaptive clustering algorithm before the feature set changed. We
aim to reach the result more efficiently than applying the correspond-
ing non-adaptive algorithm starting from the current clustering or from
scratch. Experiments testing the method’s efficiency are also reported.

1 Introduction

A large collection of clustering algorithms is available in the literature. The pa-
pers [9], [10] and [11] contain comprehensive overviews of the existing clustering
techniques. Generally, these methods apply on a set of objects measured against
a known set of features (attributes). But there are applications where the at-
tribute set characterizing the objects evolves. For obtaining in these conditions
a partition of the object set, the clustering algorithm can be, obviously, applied
over and over again, beginning from scratch or from the current partition, each
time when the attribute set changes. But this can be inefficient. We agree to call
a clustering method adaptive, if it produces a clustering by adjusting an existing
partition to attribute set extension.

We propose two adaptive clustering algorithms, named Core Based Adaptive
k-means (CBAk) and Hierarchical Core Based Adaptive Clustering (HCBAC).
They follow a common approach, based on detecting stable structures (cores)
inside the existing clusters and resuming the clustering process from these struc-
tures, when the attribute set increases. We aim to reach the result more effi-
ciently than applying the corresponding non-adaptive algorithm starting from
the current partition or from scratch.



2 Adaptive Core Based Clustering

2.1 Related Work

There are few approaches reported in the literature that refer to the problem of
adapting the result of a clustering when the object feature set is extended. Early
works treat the sequential use of features in the clustering process, one by one. An
example of such a monothetic approach is mentioned in [11]. A more recent paper
[16] analyzes the problem of adapting a clustering produced by the DBSCAN
algorithm, using some additional structures and distance approximations in an
Euclidian space. However, adapting a clustering resulted from a partitioning
by relocation algorithm, or from a hierarchical agglomerative one has not been
reported, to our knowledge.

2.2 Theoretical Model

Let X ={01,04,...,0,} be the set of objects to be clustered. Each object is
measured with respect to a set of m initial attributes and is therefore described by
an m-dimensional vector O; = (Oj1,...,0im), Oix € RT,1<i<n, 1<k < m.
Usually, the attributes associated to objects are standardized, in order to ensure
an equal weight to all of them [9].

In the following, we agree to denote by A one of the two non-adaptive tradi-
tional clustering algorithms, whom adaptive extensions we are studying in this
paper: k-means and Hierarchical Agglomerative Clustering Algorithm (HACA).

Let K= {K1, K, ..., K, } be the set of clusters discovered in data by applying
A. We mention that, in the case of HACA, the clustering process stops when p
clusters are reached, and K represents the last attained partition. Each cluster
is a set of objects, K; = {O{,O%,...,O%j},l < j < p. The centroid (cluster
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Even if it is not a typical concept of hierarchical clustering, we will make use in
our approach of the centroid notion for HACA, also.

The measure used for discriminating objects can be any metric or semi-metric
function d. We used the Fuclidian distance:

m

d(0;,0;) =dgr(0;,0;) = ‘ /lzl(Oil —0j1)2.

The measured set of attributes is afterwards extended with s (s > 1) new
attributes, numbered as (m + 1), (m + 2),...,(m + s). After the extension, the
objects’ vectors become O} = (O;1, ..., Oim; Oim+1, -+ Oimts), 1 <i < n.

We want to analyze the problem of recalculating the objects’ grouping into
clusters, after the attribute set extension. The new clusters can be, obviously,
obtained by applying A on the set of extended objects starting:

- from scratch if A is HACA,;



- from scratch or from the current partition K if A is k-means.

We try to avoid this process by replacing it with one less expensive but not
less accurate. Therefore, we will try to efficiently adapt the current partition
(K), produced by A.

We denote by K},l < j < p, the set containing the same objects as Kj,
after the extension. By f;,1 < j < p, we denote the mean (center) of the
set of K. These sets Kj,1 < j < p, will not necessarily represent clusters
after the attribute set extension. The newly arrived attributes can change the
objects arrangement into clusters. But there is a chance, when adding one or
few attributes to objects, that the old arrangement in clusters to be close to the
actual one. With these being said, we agree, however, to continue to refer the
sets K as clusters.

We take as starting point the previous partition into clusters and study in
which conditions an extended object O "is still “correctly” placed into its cluster
K. We intuitively started from the fact that, at the end of the initial k-means
clustering process, all objects are closer to the centroid of their cluster than to
any other centroid. So, for any cluster j and any object O] € K, inequality (1)
below holds.

dp(01, f;) < dg(Ol, f,),¥i,r, 1< j,r <p, v #j. (1)

This inequality will not hold for every object in respect to the clusters pro-
duced by HACA. But as we used as linkage-metric in HACA average-link, it is
likely, that a lot of objects will satisfy inequality (1) for this algorithm as well.

When attribute set extension happens, we will detect in each cluster a subset
of objects (core) that could reach together in a cluster, if we would cluster the
extended object set. We will use inequality (1), of objects closeness to the centers,
as the stability condition for delimiting cores inside clusters. So, a core of cluster
K; will consist of those objects in K; that have a considerable chance to remain
stable in a cluster, and not to divide between more clusters as a result of the
attribute set extension.

Definition 1.

a) We denote by StrongCore; = {0710} € K, O! satisfies inequality (1)
before and after attribute set extension} i.e. the set of all objects in K}
closer, before and after extension, to the center of their cluster than to
the center of any other cluster.

b) Let sat(O?") be the set of all clusters K.,¥r, 1 <r < p, r # j not containing
Of' and for which object OZJ' satisfies inequality (1) after attribute set ex-
tension. We denote by WeakCore; = {O'|0) € KJ'-,OZJ satisfies inequality
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c) Core; = StrongCore; iif StrongCorej # 0; otherwise, Core; = WeakCore;.
OCore; = K} \ Core; is the set of out-of-core objects in cluster K.



d) We denote by CORE the set {Corej,1 < j < p} of all cluster cores and by
OCORE the set {OCorej,1 < j <p}.

As we have already mentioned, for a partition produced by k-means, the
inequality (1) holds, before the attribute set extension, for every object and its
cluster.

We have chosen the above cluster cores definition because of the following
reason. In our algorithms, Core; will be the seed for cluster j in the adaptive
process. But it is possible, especially in the case of HACA, that the StrongCore
of clusters to be empty. For managing this situation, when the StrongCore
of a cluster is detected to be empty, we weaken the core forming conditions.
Correspondingly, we defined the WeakCore of a cluster, which consists of the
most stable objects in K.

The cluster cores, chosen as we described, will serve as seed in the adaptive
clustering process. All objects in Core; will surely remain together in the same
group if clusters do not change. This will not be the case for all core objects,
but for most of them, as we will see in the results section.

3 The Core Based Adaptive k-means Algorithm

We give next the Core Based Adaptive k-means algorithm. The algorithm starts
by calculating the old clusters cores. The cores will be the new initial clusters
from which the iterative processing begins. Next, the algorithm proceeds in the
same manner as the classical k-means method does. We mention that the algo-
rithm stops when the clusters from two consecutive iterations remain unchanged
or the number of steps performed exceeds the maximum allowed number of it-
erations.

Algorithm Core Based Adaptive k-means is

Input: - the set X = {O1,...,0,} of m-dimensional previously clustered
objects,
- the set X' ={0},...,0;,} of (m+s)-dimensional extended objects

to be clustered; O; has the same first m components as O;,

- the metric dr between objects in a multi-dimensional space,

- p, the number of desired clusters,

- K={Ki,...,K,} the previous partition of objects in X,

- noMazxIter the maximum number of iterations allowed.
Output: - the new partition K' = {K],...,K,} for the objects in X'.
Begin

For all clusters K; € K
Calculate Core; = (StrongCorej # 0)?StrongCore; : WeakCore;

K} = Core;
Calculate f]' as the mean of objects in K]'
EndFor

While (K' changes between two consecutive steps) and



(there were not performed noMaxIter iterations) do
For all clusters By do

K; ={0; | d& (0}, fj) < dp(0;, f,), ¥r,1 <r <p,1<i<n}
EndFor
For all clusters K do

fi = the mean of objects in K]

EndFor

EndWhile

End.

4 The Hierarchical Core Based Adaptive Algorithm

We give next the Hierarchical Core Based Adaptive algorithm. The algorithm
starts by calculating the old clusters cores. For each cluster j, the objects in
OCore; will be extracted and distributed each one in its singleton. This is a
divisive step. Clearly, from this cluster adjustment process will result a number p’
of clusters, p < p’ < n. In order to reach again the targeted number p of clusters,
we proceed next to merge clusters in the same manner as the classical HACA
does. But, as we do not generally start again from singletons, the number of
steps will be significantly reduced. Also, as we will demonstrate by experiments,
we do not significantly lose quality of clusters obtained by HCBAC compared to
the quality of clusters provided by HACA. We mention that the algorithm stops
when p clusters are obtained.

Algorithm Hierarchical Core Based Incremental Clustering is

Input: - the set X ={01,...,0,} of m-dimensional previously clustered
objects,
- the set X' ={0},...,0;,} of (m+s)-dimensional extended objects

to be clustered, C% has the same first m components as O;,

- the metric dr between objects in a multi-dimensional space,

- p, the number of desired clusters,

- K={Ki,...,Kp,} the previous partition of objects in X.
Output: - the re-partition K' = {Kj,...,K,} for the objects in X'.
Begin

For all clusters K; € K do
Calculate Core; = (StrongCore; # 0)?
StrongCore; : WeakCore;
Calculate OCore; = K; \ Core;
EndFor
C =10 // the current cluster set
For i = 1 to p do
If Core; # 10
C=CuU{Core;}
EndIf



For all O € OCore; do
C=CU{O} //add a singleton to C

EndFor

EndFor

While | C |>p do
(Cur, Coy) == argminc,, c,)de(Cu, Cv)
Chrew = Cy» U Cy»
C=C\{Cu+,Cv+)U{Chew}

EndWhile
K =C
End.

As distance between two clusters dg(C,,C,) we considered the average-link
metric:

Yaiec, 2b,ec, d(ai, b))
| Cu | x| Cy |

dg(Cu, Cy) =

This linkage metric leads to higher probability of well formed and stable cores
than would lead the single-link metric, for example.

5 Experimental Evaluation

In this section we present some experimental results obtained by applying the
CBAk and HCBAC algorithms described in section 3 and 4. We will compare
each of two algorithms with its corresponding non-adaptive version (CBAk vs
k-means, HCBAC vs HACA).

5.1 Quality Measures

Number of iterations. It determines the global calculus complexity and it is
used for evaluating the performances of both CBAk and HCBAC.

The movement degree of the core objects and of the extra-core objects
quantifies how the objects in either Core; € CORE, or OCore; € OCORE,
remain together in clusters after the algorithm ends. It is measured for CBAE. It
is not used for evaluating HCBAC because, once placed into a cluster, any set
of objects will not be splitted anymore between clusters, in the agglomerative
process.

As expected, more stable the core objects are and more they remain together
in respect to the initial sets C'ore;, better was the decision to choose them as
seed for the adaptive clustering process.

We denote by S = {S1,S2,...,5p},Si C Kj, a set of clusters’ subsets (as
CORE and OCORE are). We express the stability factor of S as:
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The worst case is when each object in S; ends in a different final cluster, and
this happens for every set in S. The best case is when every S; remains compact
and it is found in a single final cluster. So, the limits between which SF(CORE)
varies are given below, where the higher the value of SF(CORE) is, the better
was the cores choice:

p
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Squared sum error (SSE) is used for comparing the quality of the partitions
produced by CBAE and by k-means. SSE of a partition K is defined as:

SSE(K)= > > (d0;,f;)) (4)

K;eK O;€K;

When comparing two partitions Ky and Ko for the same data set, we will
say that Ky is better than Ky iff SSE(K;) < SSE(K>).

The degree of compactness of a partition is the measure equivalent to SSE
for HCBAC. The degree of compactness, or the dispersion (DISP) of a partition
K is defined as follows:
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where K = {K3,..., K,} is the cluster set obtained after applying a clustering
algorithm. DISP expresses the average distance between objects in a cluster, for
all clusters and C|2Kk| represents the number of combinations of 2 elements from
the set K.

As expected, the smaller the dispersion is, more compact clusters we have ob-
tained and better was the cores choice at the beginning of the adaptive clustering
process.

Clustering tendency. For measuring the clustering tendency of a data set,
we use the Hopkins statistics, H [14], an approach that uses statistical tests for
spatial randomness. H takes values between 0 and 1, and a value near 1 indicates



that the data is highly clustered. Usually, for a data set with clustering tendency,
we expect for H values greater than 0.5.

Information gain. For comparing the informational relevance of the attributes
we used the information gain (IG) measure ([12]).

As case studies, for experimenting our theoretical results and for evaluating
the performance of the algorithms, we consider some experiments that are briefly
described in the following subsections.

We have to mention that the data were taken from the website “http://www.
cormactech.com /neunet”.

5.2 Experiment 1. Cancer

The breast cancer database was obtained from the University of Wisconsin Hos-
pitals, Madison, Dr. William H. Wolberg.

The objects to be clusterized in this experiment are patients: each patient
is identified by 9 attributes ([15]). The attributes have been used to represent
instances and each one takes integer values between 1 and 10. Each instance has
one of 2 possible classes: benign or malignant. In this experiment there are 457
patients (objects).

5.3 Experiment 2. Dermatology

The objects to be clusterized in this experiment are also patients: each patient
is identified by 34 attributes, 33 of which are linear valued and one of them is
nominal. There are 1617 objects (patients).

The aim of the clustering process is to determine the type of Eryhemato-
Squamous Disease ([8]).

In the dataset constructed for this domain, the family history feature has the
value 1 if any of these diseases has been observed in the family, and 0 otherwise.
The age feature simply represents the age of the patient. Every other feature
(clinical and histopathological) was given a degree in the range of 0 to 3. Here,
0 indicates that the feature was not present, 3 indicates the largest amount
possible, and 1, 2 indicate the relative intermediate values.

5.4 Experiment 3. Wine

These data are the results of a chemical analysis of wines grown in the same
region in Italy but derived from three different cultivars. The analysis determined
the quantities of 13 constituents found in each of the three types of wines ([1]).
The objects to be clusterized in this experiment are wine instances: each is
identified by 13 attributes. There are 178 objects (wine instances).
We have to mention that all attributes in this experiment are continuous.



5.5 CBAEk Results

In this section we comparatively present the results obtained by applying the
CBAE algorithm and k-means, for the experimental data. We mention that the
results are calculated in average, for several executions. We considered two vari-
ants for k-means: resuming from the current partition (denoted by v1) and start-
ing from scratch (denoted by v2).

Table 1. The comparative results for k-means and CBAk

Experiment Cancer Dermatology Wine
No of objects 457 366 178
No of attributes (m+s) 9 34 13
No of new attributes (s) 4 3 4
No of clusters 2 6 3
No of k-means iterations for m attributes 5.66 10.43 9.26
No of k-means (v1) iterations for (m+s) 4 1 4.94
attributes

No of k-means (v2) iterations for (m+s) 7 10.33 6.85
attributes

No of CBAk iterations for (m+s) attributes 4 1 4.66
No of objects StrongCore/WeakCore 96.4/0 100/0 91.66/0
(% from no of objects) - CBAk

No of objects Core/OutOfCore 96.4/3.6 100/0 91.66/8.34
(% from no of objects) - CBAk

SF(CORE) - CBAk 0.67 1 0.587
SF(OCORE) - CBAk 0.84 - 0.77
k-means (v1) SSE for (m+s) attributes 13808.78  12740.23 49.73
k-means (v2) SSE for (m+s) attributes 13808.78  13049.22 49.021
CBAk SSE for (m+s) attributes 13808.78  12796.65 50.17
H for s attributes 0.666 0.68122 0.7018
H for m+s attributes 0.7148 0.6865 0.7094

From Table 1 we observe that using the CBAL algorithm the number of
iterations for finding the solution is less than or at most equal to the number
of k-means iterations, for both variants (v1 and v2). The cores’ stability factor,
SF(CORE), is high, taking into account that most of the objects are contained
in cores. We mention that for every run of each experiment, SSE(CBAk) has
been roughly equal to SSE(k-means), both for v1 and v2.

In Table 2 we present, for each experiment, the attributes in decreasing order
of their information gain (IG) - the new attributes are emphasized.

From Table 2 it results that the importance of the added attributes influ-
ences the number of iterations performed by the CBAk algorithm for finding the
solution.

A problem with the k-means algorithm is that it is sensitive to the selection
of the initial partition (centroids) and may converge to a local minimum of the



Table 2. The decreasing order of attributes in respect to the information gain measure

Experiment Order of attributes IG of new attributes /
IG of old attributes (%)
Cancer 236754819 64,7%

Dermatology 2221231343028 13267179
291016 11 25 15 6 27 4 20
3285243311221918 14 33 7,6%
Wine 71012136121194538 57%

squared error value if the initial partition is not properly chosen. In order to
evaluate properly our algorithm, we considered the same initial centroids when
running k-means for the initial and feature-extended object set (m and m + s
number of attributes). It would be interesting to analyze how a good initial
centroids choice affects the results.

5.6 HCBAC Results

In this section we comparatively present the results obtained by applying the
HCBAC and HACA algorithms, for the experimental data.

Table 3. The comparative results for HACA and HCBAC

Experiment Cancer Dermatology Wine
No of objects 457 366 178
No of attributes (m+s) 9 34 13
No of new attributes (s) 4 3 4
No of clusters 2 6 3
No of HACA iterations for m attributes 455 360 175
No of HACA iterations for (m+s) attributes (N1) 455 360 175
No of HCBAC iterations for (m+s) attributes (N2) 22 27 2
Reduction of the no of iterations (N1-N2)/N1(%) 95.16 % 92.5 % 98.8 %
DISP(HACA) for m attributes 5.3507 8.0207 0.83
DISP(HACA) for (m+s) attributes 7.6505 7.9284 0.9871
DISP(HCBAC) for (m+s) attributes 7.702 81697  0.8337
No of objects StrongCore/WeakCore 95/0 92.6/0 98.8/0

(% from no of objects) HCBAC

From Table 3 we observe that using the HCBAC the number of iterations
for finding the solution is smaller than in the case of HACA. Also, the clusters
obtained by HCBAC' are roughly equally dispersed as those given by HACA. So,
the clusters quality remains at about the same level, but the clustering process
is more efficient.



5.7 Adaptive Horizontal Fragmentation in Object Oriented
Databases

A practical problem, where the proposed methods can be efficiently used, is the
adaptive horizontal fragmentation of object oriented databases.

A horizontal fragmentation approach that uses data mining clustering meth-
ods for partitioning object instances into fragments has been presented in [4], [5],
[6], [7]. Essentially, that approach takes full advantage of existing data, where
statistics are already present, and develops fragmentation around user appli-
cations (queries) that are to be optimized by the obtained fragmentation. But
real databases applications evolve in time, and consequently they require re-
fragmentation in order to deal with new applications entering the system and
others leaving. Obviously, for obtaining the fragmentation that fits the new user
applications set, the original fragmentation scheme can be applied from scratch.
However, this process can be inefficient.

We have applied the CBAk method in the case when new user applications
arrive in the system and the current fragments must be accordingly adapted
([2]). The obtained results were good. The adaptive fragmentation keeps the
fragmentation quality around the non-adaptive one and the processing time is
improved, as the incremental method performs, generally, in less time than the
full fragmentation process.

6 Conclusions and Future Work

In this paper we proposed a new approach for adapting the result of a clus-
tering when the attribute set describing the objects increases. Two traditional
algorithms, k-means and HACA, were adapted to follow this approach. The
experiments on different data sets prove that, in most cases, the results are
reached more efficiently using the proposed adaptive methods than running the
corresponding classical algorithms, on the feature-extended object set. But there
are some situations when it is better to resort to a non-adaptive clustering of
the feature-extended object set, than using the proposed algorithms. Intuitively,
such situations can be: the addition of a large number of features or the addition
of new features with large information gain and contradictory information with
respect to the old feature set.
Further work could be done in the following directions:

— to make experiments that would cover a range of additional cases like: varied
number of added features, discrete or continuous features and to consider a
more substantial number of features and objects;

— to isolate conditions to decide when it is more effective to adapt the result
of a clustering of the feature-extended object set than to resume or restart
the clustering using k-means or HACA;

— to study how the information brought into the system by the newly added
attributes, their correlation with the initial ones, influences the performance
of the adaptive algorithms;



— to apply the adaptive algorithms on precise problems, from where the need

of such algorithms originated.
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