Flash Simulation for Developers: Simple Beam
Uniformly Distributed Load

By Michael Lively and Seyed Allameh
Northern Kentucky University

This tutorial demonstrates how Macromedia Flash can be used to create simulations for
engineering technology. The Simple Beam (Uniformily Distributed Load) simulation was
developed for the course Strength of Materials. The simulation’s unique graphical interface was
created to enhance student learning, and is presently being tested in the classroom. In this
tutorial, we demonstrate a number of programming technigues not commonly found in any one
place in the literature. We have assumed that the reader is proficient with the Flash interface
and basic action scripting.

Design and Graphical Elements

An important aspect driving the complexity of our design is the task of creating a simulation that
gives real physical numbers and a visual experience to represent those physical numbers, Taking
this into consideration requires that some error handling be created to handle the nonlinearity of
the cubic deflection equation.

Our design creates an interactive environment which graphs deflection, shear, and bending
moment as a function of beam length for a simple beam with a uniformly distributed load.

Figure 1. Plot of Deflection, Shear, and Bending Moment.

The calculations are based on four inputs; load, beam length, Young’s Modulus, and area
moment. Selection of English or Metric units is possible and accomplished using radic buttons.

Figure 2. Inputs

The simulation outputs maximum values of deflection, shear, and bending moment, and has the
ability to calculate these values as a function of x {or beam position) dynamically.

Beam x position
Defectonn)

Shear(x} ol
Bohding fﬂf{}m@ff‘/x} i
I)

Figure 3. Deflection, Shear, and Bending Moment as a function of x.

The dynamic calculations are run in three ways; by using the arrow buttons shown in Figure 3,
by using the keyboard left and right arrow keys, or by dragging the vertical red bar in Figure 1.

The interval of calculation is set by the increment input box shown in Figure 4 below. This
mnterval can be changed by inputting a new number. For example, an interval input size of 24
means that 24 points are calculated along the beam for plotting purposes when the simulation is
run. Inputting a value of 50 changes it to 50 calculated points along the beam.

Figure 4. Set Interval

The simulation is run by pressing the Run Graph Calculation button, pressing the enter key, or
sliding the vertical red bar in Figure 1.

Rur Graph Calculation

Figure 5. Run Graph Calculation button
Resources
During the simulation development, we used Macromedia Flash 8 Professional, the Flash help

dictionary found in Flash 8, and the class textbook Applied Statics and Strength of Materials
found in reference 1.

Getting Started

Download the simple beam.zip file and unzip it in a folder on your computer. In the
simple_beam folder you will find two Flash fla files (simpleBeam_starter.fla and

simpleBeam _finished.fla). The simpleBeam_starter.fla contains all the graphical elements that
you will need to complete this tutorial; and the simpleBeam finished.fla is the completed
working simulation.

Open the simpleBeam_finished.fla in Flash 8 and test it. Familiarize yourself with the program
and how it works. Close this fla and open the simpleBeam_starter.fla and then open the library
which contains all the graphical elements that you will need to complete the simulation.

Creating the Graphical Interface

Start by opening up the simpleBeam_starter.fla file in Flash 8. The file contains only one layer
labeled Background Elements which contains various static text fields, a border, an input text
field with the instance name myincre_txt, and.a dynamic text field with the instance name
my_status, The dynamic text field is used to send status messages to the screen to inform the user
of invalid input or graphical corrections made due to low input values.

Add five layers to the timeline and label them top down actions, mylnput_mc, runGraph_bin,
beamPos_mc, and myPlots_mc as shown in Figure 6.

Haons »
A myinput e e .
T Ty
[beamPos e e
L Ioks_mc

Figure 6. Simulation Lavers
Afier creating the layers, complete the following steps to build the graphical interface:

1. Drag the mylnput mc movie clip from the library and position it on state at x = 6, y = 69
and give it the instance name mylinput_mc.

2. Drag a button from the library and position it on state at x = 18, y = 248 and give it the
instance name runGraph_btn. Open up properties panel and in the parameters tab type in
the label box “Run Graph Calculation”.

3. Drag the beamPos_mc movie clip from the library and position it on state at x = 64, y =
380 and give it the instance name beamPos_mc.

4. Drag the myPlots_mc movie clip from the library and position it on state at x = 405, y =
89 and give it the instance name myPlots_mc.

Using Dot Syntax

The movie clips mylnput_mc, beamPos_mc, and myPlots_mc rely heavily on the use of dot
syntax since they are composites or movies within movies, buttons within movies, or text fields
within movies, The dot syntax is very easy to use. Each time you want to reference a movie,
button, or text field within a movie clip you simply put a dot and then the instance name you
want to reference. For example, if you want to reference the right arrow key within the
beamPos_mc movie clip of Figure 3 you would use a dot between the instance name of the
mevie clip and the instance name of the arrow button. An example of how this would be used is
in the code snippet below, where pressing the arrow key with the instance name goRight btn
contained in the beamPos_mc movie clip produces a trace to the Flash output screen.

beamPos_mc.goRight btn.onPress = function():Void{
trace(“‘pressed right arrow button™);
}

We use dot syntax extensively throughout this tutorial to drill down into movie clips and
reference other movies, buttons, and text fields. It is an important tool when dealing with
complex movie interactions.

Simulation Architecture

The simulation has six sections and the code for each section is given and discussed in detail.
Below is a short description of each section:

1. Secticn 1: Declare Initial Parameters - declares the parameters used throughout the
caiculations.

2. Section 2: Max Calculations — calculates the max deflection, shear, and bending moment.

3. Section 3: Graph Plotting — plots deflection, shear, and bending moment as a function of
beam position in the three graphs found in Figure 1.

4. Bection 4: Beam Position Calculations — codes the arrow buttons, keyboard left and right
arrows, and graph slider to dynamically calculate deflection, shear, and bending moment
as a function of beam position.

5. Section 5: Kev Board Listener — creates a listener function which listens for input from
the left arrow, right arrow, and enter keys.

6. Section 6: Radio Button Code — creates the listener for the radio buttons which
determines if Metric or English values are accepted, converted, and outputted.

Section 1: Declare Initial Parameters

Start by opening up the actions panel of the simpleBeam_starter.fla file. All code will be entered
into the top layer of the Flash timeline labeled “actions™ (which you created when setting up the
graphical interface). You may choose to manually enter the code from this tutorial or cut and
paste it from the completed tutorial.

The first statement of the code imports the necessary classes to run the English/Metric
conversion radio buttons found in Figure 2.

/Import mx.controls for radio button
import mx.controls.RadioButton;

The code below declares the constants necessary for Metric to English conversion.

//Conversion constants for English to Metric
var convPtoN:Number = 4.448;

var convFtoM:Number = 0.3048;

var convPSTtoP A:Number = 6894,7573;

var convlitomm:Number = 25.4;

var convI3tomm3:Number = 16390;

var convl4tomm4:Number = 416200;

var myConv:Number = Math.pow(12,3);

In both Figures 2 and 3 we have overlapping Metric and English unit movies. Depending on the
radio button selection, the English or Metric labels are made visible. We start by setting the
metric labels to a visibility of “false” by setting the _visible command to “false”, leaving the
English unit labels visible on the stage. Since both sets of units labels overlap, setting one
invisible reveals the other clearly. Figure 7 below shows the overlapping unit labels. Since the
labels are in the myInput mc and beamPos_mc movie clips we must use dot syntax to drill down
to them.

//Visibility of SI and English unit labels
myInput_mc.met_mc._visible = false;
beamPos_mc.met 2. visible = false;

Figure 7. Overlapping English and Metric unit labels.

In stmple cases, like our overlapping labels of Figure 7, using the _visible command works fine.
However, when dealing with more complex data transfer, it works better to reposition elements
above the screen and bring then in and out as needed as opposed to using visibility.

Declare the five input variables

/MDeclare Input variables

var sInt:Number; //Interval Size

var beamL:Number; /Beam Length

var modulasE:Number; /Young's Modulus
var densityW:Number; //Load Rate

var ibeaml:Number; //Area Moment

We use short straight line segments to create the graphs for deflection, shear, and bending
moment. The flash drawing API we use requires that we declare double values to plot the
segments. These double values are obtained from the FOR loop of Section 3.

Declare the FOR loop variables

//Declare FOR loop variables

var myX_1:Number; //1st x position for plotting segment

var myX_ 2:Number; //2nd x position for plotting segment

var defByX 1:Number; //1st y deflection for plotting segment

var defByX_2:Number; //2nd y deflection for plotting segment

var shearV_1:Number; //1st y shear for plotting segment

var shearV_2:Number; //2nd y shear for plotting segment

var bendingM_1:Number; //1st y bending moment for plotting segment
var bendingM_2:Number; //2nd y bending moment for plotting segment

By setting the xIncrement variable equal to zero, we start the program at the zero value of x on
the beam. Setting convBool equal to zero tells the radio button code that we are using English
units.

//Initial x increment parameter and conversicn Boolean
var xIncrement:Number = (;
var convBool:Number = 0;

Section 2: Max Caiculations

This portion of the stimulations calculates the maximum beam deflection, shear and bending
moment. Using the onReélease command we create a function that calls the error checking
function.

//Run calculations button
runGraph_bin.onRelease = fumction():Void{
errorChecking();

}

Run Graph Calculation 1

Figure 8. Run Graph Calculation Button.

Simple error checking has been set up using the isNAN and IF commands which check to see if
the input is a number. If any of the four inputs are not numbers an error message is sent {o a
dynamic text field on the stage which has the instance name my_status.text.

-.5'!nﬂnnumeric |]

Figure 8. Error handling of a non-numeric input.

If all the input values are numeric then the plotting function createGraph is called.

//Simple error checking

function errorChecking() {
if(isNaN(myInput_me.w_txt.text)|[isNaN(myInput_mec.]_txt.text)ljisNaN(
mylnput mc.e ixttext)iisNaN(myInput me.i txt.text)){

my_status.text = "Status: Input Error Non-numeric Value!™;

lelse
my_status.text ="";

createGraphs(); ’
33

In order, for the createGraph function to rn it must grab the input parameters from the input text
boxes. This is done using the init param function. Since the text boxes are in the myInput mc
movie clip we must use dot syntax to drill down to them.

//Grab Input parameters

function init_param(){

densityW = mylnput_mc.w_txt.text;
beamL = mylnput me.]_fxt.text;
modulasE = mylnput mc.e txt.text;
ibeam] = myInput mec.i_txt.text;
sInt = myincre txt.text;}

//Plotting function

function createGraphs(}{

//Initiate parameters

init_param(}; //Grabs the text inputs from the text boxes

Each time a graph is created the previous graph needs to be cleared since the graphing APT does
not erase what it has already drawn. All three graphs (deflection, shear, and moment) exist in
three different movie clips (me.defl mc, shear_mc, and momnt_mc) and must be cleared using
the clear() command. Once again, we must apply dot syntax to reference these movies since they
are in the myPlots_mc movie clip.

//Clear plots deflection, shear, and moment
myPlots_me.defl_mc.clear(}; //Clear the Deflection Graph
myPlots_mc.shear me.clear(); //Clear the Shear Graph
myPlots_me.momnt_inc.clear(}); //Clear the Bending Moment Graph

The equations for Max deflection, shear and bending moment of the beam were taken from the
class text book and will not be discussed in detail in this tutorial. Those wanting to learn more
about the physics can consult reference 1.

This portion of code takes the input parameters and calculates the maximum deflection.

//Calculate Max Deflection
var deflectionD = 5*density W*Math.pow(beamL, 4)*myConv/(384*modulasE*ibeaml);

‘We use this small segment of code to truncate our deflection to four decimal places. The
Math.ceil command rounds the number to its ceiling.

//Round decimal to 4 places
deflectionD = Math.ceil(deflectionD*10000)/10000;

The radio buttons in Figure 2 set the convBool variable and the IF command. If convBool is set
equal to zero then the unit “in” is added to the answer for English units and if convBool is equal
to 1 then the unit “mm” is added to the deflection answer for the Metric units. This is

accomplished using the + command which adds the string to the number. Adding units directly
to the output text is a nice touch and avoids the use of visibility commands.

//End tag function depending on units

if{convBool == (){

//Add English units to the output text field

myPlots_mc.defl mc.maxDeflection.def txt.text = deflectionD+" in";
telse{

/fAdd Metric units to the output text field

myPlots_mc.defl me.maxDeflection.def txt.text = deflectionD+" mm*;

}

The three tab pointers in Figure 1 point to the max value of the curves. We normalized our
curves using the Math.log command which enabled us {o illustrate change over a large range of
values. Using the Math.log command saved us the difficulty of creating zoom functions.

As shown in Figure 9 below, the Max Deflection pointer is positioned using dot syntax to drifl
down to the pointer and the the _y comrmand.

//Postition max tab and pointer

myPlots_me.defl_mc.maxDeflection. v=
Math.log(100*deflectionD)y*Math.log(100*

deflectionD)* ((density W*myConv)/(24*modulasE*ibeaml))* (beamL/2)*(
Math.pow(beaml.,3) - 2¥beaml *Math.pow({(beaml./2},2)+
Math.pow((beamL/2},3))/deflectionD;

myPlots_mc.defl me.maxDeflection. x =-130;

Figure 9. Deflection pointer pointing to max deflection of the graph.

Here we calculate Max Shear and limit it to two decimal places using the Math.ceil command.

/fCalculate Max Shear
var maxShear = densityW*beaml/2;
maxShear = Math.ceil(maxShear*100)/100;

As was done for deflection, we set our max shear units using the convBool variable and the IF
command.

//End tag function depending on units
if(convBool == 0){

myPlots_mc.shear mc.maxShear mc.shr txt.text = maxShear + " Ib";
jelse{
)

myPlots_mc.shear mc.maxShear me.shr_txt.text = maxShear + " N";

h

Here we move the Max Shear pointer to the correct y position using dot syntax and the vy
comniand.

Figure 10. Shear pointer pointing to max shear value of the graph.

//Position max tab and pointer
myPlots_mc.shear mc.maxShear me. y= Math.log(maxShear)
4(myPlots_mc.shear _mc._y-densityW¥(beaml./2))/maxShear;

In this segment of code, we have the shear pointer move to the left (using dot syntax and the x

command) as the deflection pointer moves down as deflection increases. This keeps the two
pointers from overlapping and interfering with one another.

13600600 ih

Figure 11. Shifting pointers as Deflection descends.

If deflection is greater than 7.5 shift the max shear pointer.

if{deflectionD>7.5) {myPlots_mc.shear mc.maxShear mc. x = -260; }
else{myPlots_mc.shear mc.maxShear me. x =-130;}

Calculate max bending moment and limit it to two decimal places using the Math.ceil command.

/{Calculate Max Bending Moment
var maxBendingM = (densityW/8)*Math.pow(beamL,2);
maxBendingM = Math.ceil{maxBendingM*100)/100;

As was done for deflection, we set our max bending moment units using the convBool variable
and the TF command.

//End tag functicn depending on units

if{convBool == (){

myPlots_mc.momnt me.maxMoment me.mnt_txt.text = maxBendingM -+ " fi-Ib";

yelse{myPlots mc.momnt mec.maxMoment mc.mnt_txt.text = maxBendingM + " m-N";}

Here we move the Max Bending Moment pointer to the correct y position using dot syntax and
the vy command.

[1rouzs frib]

Figure 12. Bending Moment peinter pointing to max Bending Moment value of the graph.

//Position max tab and pointer

myPlots mc.momnt mc.maxMoment me. vy = Math.log(maxShear)*6*
(myPlots mc.momnt_me. y-(densityW/2)*(beamL/2)*(beamL-{beaml./2)))
/maxBendingM;

Here we move the Max Bending moment to the left so it does not overlap the deflection as
shown in Figure 11. If deflection 1s greater than 17 pixels we move it to the left using the x
position command.

if(deflectionD>17) {myPlots mc.momnt mc.maxMoment mc. x = -260; }
else {myPlois_mc.momnt mec.maxMement_me._x =130;}

The physical equations are nonlinear and as a result experience a large range of variation.
During certain input values the graph drops below the line of origin for shear and bending
moment (see Figure 1). So the following code adjusts the plotting axis to stay with the center y
position of the function. The condition only occurs for low input values and causes the graph to
err in 1ts representation by shifting the center line of the function. If there is a shift of more than
4 pixels, a status message is sent stating that the axis has been adjusted.

Figure 13. Bending Moment pointer pointing to max Bending Moment value of the graph.

//Shear line Adjust for low numbers & Calculate Shear Endpoint Values

var myFirstNum: Number = Math.log(maxShear)*4*

{(myPlots_mc.shear me. y- densityW*(beamL/2 - 0)YmaxShear;

var myLastNum:Number = Math log(maxShear)*4*

{myPlots_mc.shear mc._y- densityW*{(beamL/2 - beamL)}/maxShear;

var myAdjustShear = (myFirstNum+myLastNum)/2; //Shear axis amount to shift
myPlots mc.myGraphic.shearLine mc. y =253.0 + myAdjustShear;

Adjust Bending Moment Axis.

//Bending Moment line Adjust for low numbers

var myFirstNum2:Number = Math.log{maxShear)*6*(myPlots_mc.momnt me. vy
maxBendingM;

var myLastNum2:Number = Math.log(maxShear)*6*(myPlots_mc.momnt_mec._y)
/maxBendingM;

var myAdjustMoment = (myFirstNum2+myLastNum?2)/2;//Moment axis shift
myPlots mc.myGraphic.momentlLine_mc¢. v = 386 + myAdjustMoment;

Send status message that the bending moment axis has been shifted.

//Send Status message if shift of more that 4 pixels occurs
ifimyAdjustShear>4){my_status.text = "Status: Adjusted Axis for small input value
no hatch plotting”; }//Change the graph if it shifts more than 4 pixels.
else{my _status.text ="";}

Two important aspects driving the complexity of the code above arise from the design task of
creating a simulation that gives real physical numbers and a visual experience to represent those
physical numbers. Thus, in the creation of the simulation both aspects drove the need for error
handling of the highly fluctuating number values of a nonlinear equation.

Section 3: Graph Plotting

In this section, we discuss the code that creates the graphs for beam deflection, shear, and
bending moment. For simplicity, we use short straight line segments to plot the graphs. The
drawing API used requires that we declare double values to plot the segments. These double
values are easily obtained from the FOR loop by calculating the ith and ith+1 values and plotting
a segment for each iteration.

Notice that the FOR loop iterates through one less than the total mumber of iterations (sInt-1).
Since we are calculating the ith and ith+1 values for each iteration, the final value is calculated
on the ith-1 iteration.

for (i = 0; 1 <=shnt-1; i++) §{

At each value of i of the FOR loop, we calculate two values of position on the beam by
calculating the ith and ith +1 values.

/X points
myX_1 = i*beamL/sInt;
myX_2 = (i+1)*beaml/sknt;

The Figure 14 below shows six straight line segments generated by an interval (sInt) value of six.
In this case, 12 beam position values (6 myX 1 and 6 myX 2) are generated to create this curve.

T P P e e

Figure 14. Bending Moment pointer pointing to max Bending Moment value of the graph.
Calculate the 1** deflection value for the 1% point of the line segment.

//Calculate Deflection Values

defByX 1= Math.log(i00*deflectionD)*Math.log(100*deflectionD}*({density W*myConv)/
(24*modulasE*ibeam]))*myX 1*(Math.pow(beamL,3) —
2*beaml.*Math.pow(myX_1,2)+Math.pow(myX_1,3))/deflectionD;

Calculate the 2™ deflection value for the 2™ point of the line segment.

defByX 2 = Math.Jog{100*deflectionD)*Math.log{100*deflectionD)*((density W*myConv)/
(24*modulasE*ibeaml))*myX 2*(Math.pow(beaml.,3) —
2¥peaml *Math.pow(myX 2. 2)+Math.pow(myX_2,3})V/deflectionD;

Plot the ith deflection line segment vsing the Flash drawing API. The drawing API allows you to
create vector graphics. Using ActionScript we can draw lines, curves, shapes, fills, and gradients
and display them on the screen. You can draw with ActionScript on a MovieClip instance. In our
case, we define three movie clip instances for our three graphs (mec.defl_me, shear me, and
momnt_mc). These movie clips were placed inside another movie clip named myPlots_mc and
dot syntax is used to reference the graphs. It takes two points to draw each line segment. The
moveTo command sets the beginning point of the drawing API (sets the pen down) and the
lineTo command draws a straight line from the first point to the second point.

//Plot deflection values
myPlots_mc.defl_mc.lineStyle(1, 0x000000, 100); //Define line size, line color, line

transparency

myPlots_me.defl_me.moveTo{myX 1%*248/beamL, defByX 1); //First point of the line
segment

myPlots_mc.defl_me.lineTo(myX 2*248/beaml., defByX 2); /Second point of the line
segment

Figure 15. Deflection. Graph.

In reference 1, the textbook graphics have vertical hatch lines. We are able to reproduce this
effect using the modulus command (%). Using the modulus and IF command, we draw the
vertical hatch lines on the graph every 4" value of i. This occurs since the modulus is the

remainder of “i” divided by 4. Every multiple of 4 has a value of zero and a vertical hatch line is

drawn.

/Vertical Grid Lines

if(i%4==0){

myPlots mc.defl mc.lineStyle(1, 0x000000, 100);
myPlots_mc.defl_mc.moveTo(myX _1*248/beamL, 0);
myPlots_mec.defl me.lineTo(myX 1*248/beaml., defByX 1);
}

Calculate the 1% deflection value for the 1% point of the line segment.
//Calculate Shear Values
shearV_1 = Math.log(maxShear)*4*(myPlots_mc.shear mec. y-densityW*
{beaml./2 - mayX_1))/maxShear;

Calculate the 2 shear value for the 2 point of the line segment.

shearV_2 = Math.log(maxShear)*4*(myPlots_mc.shear me. y-density W*
(beamL/2 - myX_ 2))/maxShear;

Plot the ith shear line segment using the Flash drawing APL
//Plot shear values

myPlots_mc.shear mc.lineStyie(1, 0x000000, 100); //Define line size, line color, line
transparency

myPlots_mc.shear mc.moveTo(myX_1*248/beamL, shearV _1); //First point of line segment

myPlots_mc.shear_me.lineTo{myX 2*248/beaml., shearV_2);

Figure 16. Shear Graph.

Draw the vertical hatch lines on the graph every 4™ value of i using the modulus function and
commands.

//Vertical Grid Lines

if(i%4==0&&myAdjustShear<4){

myPlots_mec.shear mec.lineStyle(1, 0x000000, 100);
myPlots_mc.shear me.moveTo(myX_1¥248/beaml, 0);
myPlots_mc.shear_me.lineTo(myX 1*248/beamL, shearV_1);
h

Calculate the 1* bending moment value for the 1 point of the line segment.

//Calculate Bending Momment values
bendingM_1 = Math.log(maxShear)*6*(myPlots mc.momnt_mc. y-
(densityW/2Y*myX 1*(beamL-myX 1))/maxBendingM,

Calculate the 2™ bending moment value for the 2™ point of the line segment.

bendingM_2 = Math log(maxShear)*6*(myPlots_mc.mommt me. y-
{densityW/2)*myX_2¥*(beamL-myX_ 2))/maxBendingM;

Plot the ith bending moment line segment using the flash drawing API.

//Plot bending moment values

myPlots_mc.momnt_mc.lineStyle(1, 0x000000, 100); /Define line size, line color, line
transparency

myPlots_ mc.momnt mc.moveTo(myX 1*248/beamL, bendingM_1); //first point of line
segment

myPlots_mc.momnt_me.lineTo(myX_2*248/bearnl,, bendingM_2);

Figure 17. Bending Moment Graph.

Draw the vertical hatch lines on the graph every 4™ value of i using the modutus and IF
commands.

/{Vertical Grid Lines

1f(1%4—=0&&myAdjustMoment<4){

myPlots me.momnt_me.lineStyle(?, 0x000000, 100);

myPlots me.momnt_mc.moveTo(myX_1*248/beamL., 0);
myPlots me.momnt mc.ineTo(myX 1*¥248/beaml, bendingM_1);

13
//End of for loop

}
Section 4: Beam Position Calculations
In addition to calculating max values and plotting graphs of deflection, shear, and bending
moment, we developed a graphical interface which allows for dynamic calculations of these

values anywhere on the beam by using arrow buttons, arrows on the kevboard, or a slider bar.

Figure 18. Beam Position Arrow Buttons

Upon pressing the right arrow key the errorChecking function is run which calculates the present
max values and creates our three graphs in Figure 1.

//Increment Right
beamPos mc.goRight btn.onPress = function(}:Void{
errorChecking(};

The onEnterFrame command is started and executes its function at the current frame rate which
increments the xIncrement beam position value along the beam and calculates dynamically the
values of deflection, shear, and bending moment by executing the findValues function. The IF
statement stops the iteration of xIncrement if xIncrement is greater than or equal to the beam
fength beaml.. It does this since the ith+1 value is calculated in the FOR loop and there is no
need to calculate further. If the final ith+1 value is greater than the beam length, then a second IF
statement changes the final value to the beam length.

myPlots_me.myGraphic.onEnterFrame = function{):Void{
if(xIncrement<beaml.}{

xIncrement=xIncrement+beami. /sInt;
if(xIncrement>beaml) {xIncrement=beamL;}

beamPos me.x pos.text = xIncrement;

findValues(xIncrement);

1}
}

Upon release of the right arrow key the onEnterFrame command is deleted and the dynamic
calculations cease.

beamPos_mc.goRight btn.onRelease = function():Void{
delete myPlots_mc.myGraphic.onEnterFrame;

}

Upon mouse release outside of the right arrow key the onEnterFrame is deleted and the dynamic
calculations cease. It is important to handle this condition as well since accidentally sliding away
from the button and releasing will cause the calculation to continue if not corrected using action
scripting.

beamPos_mc.goRight bin.onReleaseOutside = function(}:Void{
delete myPlots_mc.myGraphic.onEnterFrame;

}

Upon pressing the left arrow key the errorChecking function is run which calculates the present
Max values and creates our three graphs.

/MDecrement Left
beamPos mec.goleft bin.onPress = function():Void{
errorChecking();

The onEnterFrame command 1s started and executes its function at the current frame rate which
decrements the value along the beam and calculates dynamically the values of deflection, shear,
and bending moment by executing the findValues function. The IF statement stops the iteration
of xIncrement if xIncrement 15 less than or equal to zero. If the value is less than the value of
zero, then a second IF statement changes the final value to zero.

myPlots_mc.myGraphic.onEnterFrame = function():Void{
if(xIncrement>0) {

xIncrement=xIncrement-beaml/slnt;
if(xIncrement<Q}{xIncrement=0;}
beamPos_mc.x_pos.text = xIncrement;
findValues(xIncrement});

31
3

Upon release of the right arrow key the onEnterFrame is deleted and the dynamic calculations
cease.

beamPos_mc.gel.eft btn.onRelease = function():Void{
delete myPlots mc.myGraphic.onEnterFrame;

}

Upon mouse release ouiside of the left arrow key the onEnterFrame is deleted and the dynamic
calculations cease. It is important to handle this condition as well since accidentally sliding away
from the button and releasing it will cause the calculation to continue.

beamPos_mc.goLeft btn.onReleaseOutside = function():Void{
delete myPlots_mc.myGraphic.onEnterFrame;

}

The red line of Figure 19 below can be dragged along the beam to calculate deflection, shear,
and bending moment as a function of beam position.

Figure 19. Drag able red line

myPlots mc.myGraphic.redLine mx.onPress = function():Void {
errorChecking(};

Upon pressing the red line the erroChecking function is executed which calculates the max
vaiues and plots the graphs. Then the startDrag function is executed. Its parameters (0,0,0,247)
restricts the drag of the red line vertically, and horizontally along the beam which is 247 pixels
long. In addition, the onMouseMove command 1s executed which dynamically calculates the

values of deflection, shear, and bending mement as the mouse moves by executing the
findValues function.

this.startDrag(0,0,0,247);

this.onMouseMove = function():Void{

findValues(this. x*(beaml./247));

trace(this._x);

beamPos_mc.x_pos.text = xIncrement= this. x*(beamL/247);
xIncrement = (beamI./sInt)*Math. floor(xIncrement/{beaml /sInt)};
h

h

Upon release of the mouse the onMouseMove is set fo Null which stops the calculations and the
stopDrag function is executed which releases the red line from the mouse. Once again, we are
using dot syntax to drill down to the red line.

myPlots me.myGraphic.redLine mx.onRelease = fonction(}:Void {
this.cnMouseMove = null;

this.stopDrag();

1

It is important to execute an on release outside function, otherwise the red line will stick to the
mouse if it is slid off the graph without release. Thus upon return to the graph the red Hoe will
stick to the mouse and slide without clicking.

myPlots_mc.myGraphic.redLine mx.onReleaseQOutside = function():Void {
this.onMouseMove = null;

this.stopDrag();

}

The purpose of the findValues function is to receive the new value of xIncrement and find the
new values of deflection, shear, and bending moment and send them to the appropriate dynamic
text boxes for display shown in Figure 20.

- Beflection(ny

!

i

l

Beinding Homen

Figure 20. Deflection, Shear, and Bending Moment output

//Main function for calulating beam deflection, shear, and bending moment as a function of x
function findValues(inputX): Void {

var dx_txtFull:Number =
{(densityW*myConv)/(24*modulasE*ibeamI) *inputX *(Math.pow(beamL,3) —
2*peamL*Math pow(inputX,2)+Math.pow(inputX,3));

//Truncation to four decimal places

beamPos me.dx txttext = Math.ceil{dx txtFull*10000)/10000;
beamPos_mc.sx_txt.text = densityW*(beamL/2 - inputX);
beamPos_me.bx_txt.text = (densityW/2)*inputX*(beamL-inputX);
myPlots_mc.myGraphic.redLime mx. x = inputX*(247/beamL);

b

Section 5: Keyboard Listener

It 1s a nice touch to be able to enter commands from the keyboard. It saves time and is intuitive
to the user. However, from experience, we have learned that the keyboard listener function in

Flash can sometime interfere with other code. So once implemented, it needs to be thoroughly
tested and the appropriate error handling code inserted.

Create the key listener object.

/fCreate a listener function which listens for input from the left & right arrow, and enter keys.
var keyListener:Object = new Object();

Using the onKeyDown function determines which key is being pressed.
keyListener.onKeyDown = function():Void {

Use the following code snippet to determining various key code values without having to use a
keyboard conversion table. The values are sent directly to the output window using the trace
command.

{/trace code for finding Key Code, Ascii, and Character Ascil
trace("DOWN -> Code: " + Key.getCode() + "MACSII: " + Key.getAscii() + "\tKey: * +

chr(Key.getAscii(}});

The key code value of 13 is the Enter key. Upon pressing the Enter key the function
erroChecking is executed which determines the max values of deflection, shear, and bending
moment and then plots the graphs.

//Enter Key to Run Graph Calculation
if(Key.getCode()==13){

xIncrement = 0;
myPlots_mec.myGraphic.redLine mx. x =0;
errorChecking();

}

The key code value of 37 is the Left arrow key. Upon pressing the Left arrow key on the
keyboard the function erroChecking is executed which determines the max values of deflection,
shear, and bending moment and then plots the graphs.

/fLeft Arrow Key
ifiKey.getCode()==37){

We found that the key code was interacting with our radio buttons when pressing the left or right
arrow keys. So we disabled the radio buttons during key press and enabled them upon release
using the enabled command equal to false or true. This cleared up the problem. But it illustrates
that using the keyboard in Flash for complex programs can be cumbersome.

mylnput_mc.radioGroup.enabled = false;
errorChecking();

Next, the onEnterFrame command is started and executes its function at the current frame rate
which decrements the value along the beam and calculates dynamically the values of deflection,
shear, and bending moment by exccuting the findValues function.

myPlots_me.myGraphic.onEnterFrame = function(): Void {
if(xIncrement>0){

xIncrement=xIncrement-beaml/sInt;
if{xIncrement<0)}{xIncrement=0;}
beamPos_mc.x_pos.text = xIncrement;
findValues(xIncrement);

3}
}

The key code value of 39 is the right arrow key. Upon pressing the right arrow key on the
keyboard the function erroChecking is executed which determines the max values of deflection,
shear, and bending moment and then plots the graphs.

//Right Arrow Key
if(Key.getCode()==39){

By disabling the radic buttons during key press we cleared up the interaction of the keyboard
arrow keys with the radic buttons. On key release, we enable the radio buttons.

mylnput_mec.radioGroup.enabled = false;
errorChecking();

As before, the onEnterFrame function is called and executes its function at the current frame rate
which decrements the value along the beam and calculates dypamically the values of deflection,
shear, and bending moment by executing the findValues function.

myPlots_me.myGraphic.onEnterFrame = function(): Void {
if(xIncrement<beaml.){

xIncrement=xIncrement+beami /sint;
if(xIncrement>beamL){xIncrement=beaml;}
beamPos_mc.x_pos.text = xIncrement;
findValues(xIncrement);

1
}

It is important to stop the onEnterFrame function upon releasing the error keys. This is done
using the onKeyUp function and deleting the onEnterFrame.

keyListener.onKeyUp = function():Void {

This enables the radio buttons on the onKeyUp command.

mylnput_mc.radioGroup.enabled = frue;
delete myPlots_mc.myGraphic.onEnterFrame;

}

Finally, the keyListerner object (created at the very beginning) is added. One of the most
common efrors in coding listener objects is to fail to create a listener object or to forget to copy
and paste it from a code bank.

/Key listerner
Key.addListener(keyListener);

Section 6: Radio Button Code

In this final portion of the code, we want to select English or Metric units using radio buttons.
The radio button code was taken directly from the Flash help library within the Flash dictionary
library inside of Flash. To this code we added the English and Metric conversion coding.

First, we create the listener object.

// Create listener object.
var rblistener:Object = new Object();

This function is executed when the user clicks a radio button.

rbListener.click = ﬁmction(evt__bbj :Object){
In many coding situations, we want to know the instance name of what we are pressing. This is
accomplished by using the name command. So in our case if the radio button pressed has the
instance name met_radio then we run the Metric conversion code.

ifievt_obj.target.selection. name = "met_radio™)}{

We set the convBool equal to 1 so that the correct Metric units are inserted into the max pointer
dynamic text boxes discussed earlier.

convBool=1;

In this segment, we set the visibility of the labels by making the Metric labels visible and English
labels invisible using the _visible command.

mylnput_me.met me._visible = true;
beamPos_mc.met 2. visible = true;
mylnput_mc.eng_me._visible = false;

beamPos mc.eng 2. visible = false;

This code converts the input values to Metric and places the Metric values back into the input
text boxes.

mylnput me.w_txt.text=myInput mc.w_txt.text*convPtoN/convFtoM;
mylnput me.l txttext=mylnput me.]l txttext*convFicM;
mylnput_mc.e_txt.text=myInput mc.e txt.text*convPSIioPA;
myloput_me.i_txt.text=mylnput mc.i_ixt.text*convl4tomm4;
sInt = myincre _txt.text;

Set the deflection conversion factor.

myConv = myConv*convI3tomm3* 10600000,

If the radio instance name is not equal to met_radio then we run the English conversion code.

relsed

We set the convBool equal to 0 so that the correct English units are inserted into the max pointer

dynamic text boxes discussed earlier.

convBool =0

In this segment we set the visibility of the labels making English labels visible and Meiric labels

invisible using the visible command,

myhput_me.met_me. visible = false;
beamPos mc.met 2. visible = false;
mylnput_ mc.eng_mec._visible = true;
beamPos_mc.eng 2. visible = true;

This code converts the input values to English and places the English values back into the input
text boxes.

mylnput_me.w_txttext=mylnput mec.w_txttext*convFtoM/convPtoN;
mylnput med txt.text=myloput_mc.] txt.text/convFioM;
mylnput me.e_txttext=mylnput mc.e txt.text/convPShtoPA;
mylnput_mec.i_txt.text=myloput_mec.i_txt.text/convldtomm4;

Set the equations conversion factor.

myConv = myConv/(106000000*convI3tomm3);
myConv = Math.pow(12,3);

}

b

Finally, create the click listener and connect it to our rbListener object.

/i Radio Button listener.
myInput mc.radioGroup.addEventListener("click”, rbListener);

Summary

The greatest advantage of using Macromedia Flash in building scientific simulations is Flash’s
ability to combine high level programming with a rich user environment. In this tutorial, we
demonstrated a number of programming techniques not commonly found in any one place in the
literature. There are few (if any) good Flash books for programming engineering interfaces for
the classroom. It is our hope that paper helps fill that gap.

With Adobe’s purchase of Macromedia we have seen the architecture of Flash extend
considerably. Given Flash’s cross platform and rapid deployment ability, it is the tool of choice
for academic simulation.

Additional Flash Resources

For the reader who wants to pursue a vigorous Flash training program, we have found the
following resources useful in our study of Flash for beginner to advanced programmer.

1. Iynda.com - a video library of very pertinent multimedia topics — stays current on many
topics.

2. Community MX - professionals in the Flash community publish articles, and how-to
tutorials.

3. Flash Xit - an extensive resource of Flash tutorials and example movies.

4. Safari Online - entire library of online books on various computer related topics - very
current.

5. Adobe.com - extensive tech docs and some example code (& Flash internal code help).

6. kirupa.com - extensive set of online futorials which deal with the use of PHP, MYSQL, and
Flash.

7. trainsimpleonline.com — a video library geared towards the Flash professional treating up-to-
date and relevant topics. Top notch site!

Acknowledgement

Many thanks to our Dean of Arts and Sciences Kevin Corcoran whose generous support made
this paper possible.

References

1. Leonard Spiegel and George F. Limbrunner, Applied Statics and Strength of Materials 4%
Edition, Pearson Education, Inc., 2004

